Abstract
Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Argawal, P.K., Suri, S.: Surface approximation and geometric partitions. SIAM Journal on Computing 27(4), 1016–1035 (1998)
Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete and Computational Geometry 14, 263–279 (1995)
Das, G., Goodrich, M.T.: On the complexity of optimization problem for 3D convex polyhedra and decision trees. Computational Geometry: Theory and Applications 8, 123–137 (1997)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.: Irregular graph pyramids and representative cocycles of cohomology generators. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 263–272. Springer, Heidelberg (2009)
Gonzalez-Diaz, R., Ion A., Iglesias-Ham M., Kropatsch W.: Invariant representative cocycles of cohomology generators using irregular graph pyramids. Computer Vision and Image Understanding (in press)
Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H., Real, P.: Integral operators for computing homology generators at any dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)
Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cohomology ring of 3D cubical complexes. In: IWCIA 2009. LNCS, vol. 5852, pp. 139–150. Springer, Heidelberg (2009)
Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cohomology ring of 3D photographs. Int. Journal of of Imaging Systems and Technology (in press)
Gonzalez–Diaz, R., Real, P.: Towards digital cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)
Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Applied Math. 147, 245–263 (2005)
Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology. Applied Mathematical Sciences 157 (2004)
Kovalevsky, V.A., Schulz, H.: Convex hulls in a 3D space. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 176–196. Springer, Heidelberg (2004)
Kravatz, D.: Diagonal approximations on an n-gon and the cohomology ring of closed compact orientable surfaces. Senior Thesis. Millersville University Department of Mathematics (2008)
Lamar-Leon, J., Garcia-Reyes, E., Gonzalez-Diaz, R.: Human gait recognition using topological information. In: Proc. of CTIC (2010); Electronic Journal Image-A, http://munkres.us.es/ 1(3) (2010). Selected paper invited to submit an extended version to a Special issue devoted to CTIC2010 in Pattern Recognition Letter
Latecki, L.J.: 3D well-composed pictures. Graphical Models and Image Processing 59(3), 164–172 (1997)
Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Co., Reading (1984)
Peltier, S., Ion, A., Kropatsch, W.G., Damiand, G., Haxhimusa, Y.: Directly computing the generators of image homology using graph pyramids. Image and Vision Computing 27(7), 846–853 (2009)
Schulz, H.: Polyhedral approximation and practical convex hull algorithm for certain classes of voxel sets. Discrete Appl. Math. 157(16), 3485–3493 (2009)
Serre, J.P.: Homologie singuliere des éspaces fibrés, applications. Ann. Math. 54, 429–501 (1951)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gonzalez-Diaz, R., Lamar, J., Umble, R. (2011). Cup Products on Polyhedral Approximations of 3D Digital Images. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-21073-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21072-3
Online ISBN: 978-3-642-21073-0
eBook Packages: Computer ScienceComputer Science (R0)