Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cup Products on Polyhedral Approximations of 3D Digital Images

  • Conference paper
Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

  • 947 Accesses

Abstract

Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Argawal, P.K., Suri, S.: Surface approximation and geometric partitions. SIAM Journal on Computing 27(4), 1016–1035 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete and Computational Geometry 14, 263–279 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Das, G., Goodrich, M.T.: On the complexity of optimization problem for 3D convex polyhedra and decision trees. Computational Geometry: Theory and Applications 8, 123–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  5. Gonzalez-Diaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.: Irregular graph pyramids and representative cocycles of cohomology generators. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 263–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Gonzalez-Diaz, R., Ion A., Iglesias-Ham M., Kropatsch W.: Invariant representative cocycles of cohomology generators using irregular graph pyramids. Computer Vision and Image Understanding (in press)

    Google Scholar 

  7. Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H., Real, P.: Integral operators for computing homology generators at any dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cohomology ring of 3D cubical complexes. In: IWCIA 2009. LNCS, vol. 5852, pp. 139–150. Springer, Heidelberg (2009)

    Google Scholar 

  9. Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Cohomology ring of 3D photographs. Int. Journal of of Imaging Systems and Technology (in press)

    Google Scholar 

  10. Gonzalez–Diaz, R., Real, P.: Towards digital cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Applied Math. 147, 245–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology. Applied Mathematical Sciences 157 (2004)

    Google Scholar 

  13. Kovalevsky, V.A., Schulz, H.: Convex hulls in a 3D space. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 176–196. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kravatz, D.: Diagonal approximations on an n-gon and the cohomology ring of closed compact orientable surfaces. Senior Thesis. Millersville University Department of Mathematics (2008)

    Google Scholar 

  15. Lamar-Leon, J., Garcia-Reyes, E., Gonzalez-Diaz, R.: Human gait recognition using topological information. In: Proc. of CTIC (2010); Electronic Journal Image-A, http://munkres.us.es/ 1(3) (2010). Selected paper invited to submit an extended version to a Special issue devoted to CTIC2010 in Pattern Recognition Letter

  16. Latecki, L.J.: 3D well-composed pictures. Graphical Models and Image Processing 59(3), 164–172 (1997)

    Article  Google Scholar 

  17. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Co., Reading (1984)

    MATH  Google Scholar 

  18. Peltier, S., Ion, A., Kropatsch, W.G., Damiand, G., Haxhimusa, Y.: Directly computing the generators of image homology using graph pyramids. Image and Vision Computing 27(7), 846–853 (2009)

    Article  MATH  Google Scholar 

  19. Schulz, H.: Polyhedral approximation and practical convex hull algorithm for certain classes of voxel sets. Discrete Appl. Math. 157(16), 3485–3493 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serre, J.P.: Homologie singuliere des éspaces fibrés, applications. Ann. Math. 54, 429–501 (1951)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonzalez-Diaz, R., Lamar, J., Umble, R. (2011). Cup Products on Polyhedral Approximations of 3D Digital Images. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics