Abstract
In this paper, we adopt a supervised machine learning approach to recognize six basic emotions (anger, disgust, fear, happiness, sadness and surprise) using a heterogeneous emotion-annotated dataset which combines news headlines, fairy tales and blogs. For this purpose, different features sets, such as bags of words, and N-grams, were used. The Support Vector Machines classifier (SVM) performed significantly better than other classifiers, and it generalized well on unseen examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alm, C.O.: Affect in Text and Speech. PhD Dissertation. University of Illinois at Urbana- Champaign (2008)
Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007)
Aman, S.: Identifying Expressions of Emotion in Text, Master’s thesis, University of Ottawa, Ottawa, Canada (2007)
Arora, S., Mayfield, E., Penstein-Ros, C., Nyberg, E.: Sentiment Classification using Automatically Extracted Subgraph Features. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text (2010)
Ekman, P., Friesen, W.V.: Facial action coding system: Investigator’s guide. Consulting Psychologists Press, Palo Alto (1978)
Izard, C.E.: The Face of Emotion. Appleton-Century-Crofts, New York (1971)
Melville, P., Gryc, W., Lawrence, R.: Sentiment Analysis of Blogs by Combining Lexical Knowledge with Text Classification. In: Proc. of KDD, pp. 1275–1284 (2009)
Neviarouskaya, A., Prendinger, H., Ishizuka, M.: @AM: Textual Attitude Analysis Model. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, Los Angeles, USA (2010)
Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Compositionality Principle in Recognition of Fine-Grained Emotions from Text. In: Proceedings of the International Conference on Weblogs and Social Media. AAAI, San Jose (2009)
Paulmann, S., Pell, M.D.: Dynamic emotion processing in Parkinson’s disease as a function of channel availability. Journal of Clinical and Experimental Neuropsychology 32(8), 822–835 (2010)
Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)
Strapparava, C., Mihalcea, R.: Semeval- 2007 task 14: Affective text. In: Proceedings of the 4th International Workshop on the SemEval 2007, Prague (2007)
Strapparava, C., Valitutti, A., Stock, O.: The affective weight of lexicon. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, Genoa, Italy (2006)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaffar, S., Inkpen, D. (2011). Using a Heterogeneous Dataset for Emotion Analysis in Text. In: Butz, C., Lingras, P. (eds) Advances in Artificial Intelligence. Canadian AI 2011. Lecture Notes in Computer Science(), vol 6657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21043-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-21043-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21042-6
Online ISBN: 978-3-642-21043-3
eBook Packages: Computer ScienceComputer Science (R0)