Nothing Special   »   [go: up one dir, main page]

Skip to main content

Back and Forth between Rules and SE-Models

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6645))

Abstract

Rules in logic programming encode information about mutual interdependencies between literals that is not captured by any of the commonly used semantics. This information becomes essential as soon as a program needs to be modified or further manipulated.

We argue that, in these cases, a program should not be viewed solely as the set of its models. Instead, it should be viewed and manipulated as the set of sets of models of each rule inside it. With this in mind, we investigate and highlight relations between the SE-model semantics and individual rules. We identify a set of representatives of rule equivalence classes induced by SE-models, and so pinpoint the exact expressivity of this semantics with respect to a single rule. We also characterise the class of sets of SE-interpretations representable by a single rule. Finally, we discuss the introduction of two notions of equivalence, both stronger than strong equivalence [1] and weaker than strong update equivalence [2], which seem more suitable whenever the dependency information found in rules is of interest.

An extended version of this paper with all the proofs is available at http://arxiv.org/abs/1102.5385

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Damásio, C.V., Pereira, L.M., Schroeder, M.: REVISE: Logic programming and diagnosis. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 354–363. Springer, Heidelberg (1997)

    Google Scholar 

  4. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Programming 45(1-3), 43–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on causal rejection. Theory and Practice of Logic Programming 2(6), 721–777 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. Theory and Practice of Logic Programming 3(6), 671–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y.: Logic program-based updates. ACM Transactions on Computational Logic 7(3), 421–472 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic programs under answer set semantics. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning, Sydney, Australia, September 16-19, pp. 411–421. AAAI Press, Menlo Park (2008)

    Google Scholar 

  11. Delgrande, J.P.: A Program-Level Approach to Revising Logic Programs under the Answer Set Semantics. In: Theory and Practice of Logic Programming, 26th Int’l. Conference on Logic Programming Special Issue, vol. 10(4-6), pp. 565–580 (2010)

    Google Scholar 

  12. Gärdenfors, P.: Belief Revision: An Introduction. In: Belief Revision, pp. 1–28. Cambridge University Press, Cambridge (1992)

    Chapter  Google Scholar 

  13. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 957–962. IOS Press, Amsterdam (2010)

    Google Scholar 

  14. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San Francisco (1988)

    Chapter  Google Scholar 

  15. Dix, J.: A classification theory of semantics of normal logic programs: II. Weak properties. Fundamenta Informaticae 22(3), 257–288 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Łukasiewicz, J.: Die Logik und das Grundlagenproblem. In: Les Entretiens de Zürich sue les Fondements et la méthode des sciences mathématiques 1938, Zürich, pp. 82–100 (1941)

    Google Scholar 

  17. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory and Practice of Logic Programming 3(4-5), 609–622 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Conference and Symposium on Logic Programming, August 15-19, pp. 1070–1080. MIT Press, Washington (1988)

    Google Scholar 

  20. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1), 39–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  23. Alexandre Leite, J.: Evolving Knowledge Bases. Frontiers of Artificial Intelligence and Applications, vol. 81, xviii + 307 p. IOS Press, Amsterdam (2003); Hardcover

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slota, M., Leite, J. (2011). Back and Forth between Rules and SE-Models. In: Delgrande, J.P., Faber, W. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2011. Lecture Notes in Computer Science(), vol 6645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20895-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20895-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20894-2

  • Online ISBN: 978-3-642-20895-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics