Nothing Special   »   [go: up one dir, main page]

Skip to main content

TSP on Cubic and Subcubic Graphs

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation, is 4/3. Using polyhedral techniques in an interesting way, we obtain a polynomial-time 4/3-approximation algorithm for this problem on cubic graphs, improving upon Christofides’ 3/2-approximation, and upon the 3/2 − 5/389 ≈ 1.487-approximation ratio by Gamarnik, Lewenstein and Svirdenko for the case the graphs are also 3-edge connected. We also prove that, as an upper bound, the 4/3 conjecture is true for this problem on cubic graphs. For subcubic graphs we obtain a polynomial-time 7/5-approximation algorithm and a 7/5 bound on the integrality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs (2011) (manuscript)

    Google Scholar 

  2. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the hamiltonian cycle problem for bipartite graphs. Journal of Information Processing 3, 73–76 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proc. of the 9th ACM–SIAM Symposium on Discrete Algorithms, pp. 33–41 (1998)

    Google Scholar 

  4. Barahona, F.: Fractional packing of T-joins. SIAM Journal on Discrete Math. 17, 661–669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benoit, G., Boyd, S.: Finding the exact integrality gap for small travelling salesman problems. Math. of Operations Research 33, 921–931 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, P., Karpinski, M.: 8/7-approximation algorithm for 1,2-TSP. In: Proc. 17th ACM SIAM Symposium on Discrete Algorithms, pp. 641–648 (2006)

    Google Scholar 

  7. Boyd, S., Iwata, S., Takazawa, K.: Finding 2-Factors Covering 3- and 4-Edge Cuts in Bridgeless Cubic Graphs Kyoto University (2010) (manuscript)

    Google Scholar 

  8. Csaba, B., Karpinski, M., Krysta, P.: Approximability of dense and sparse instances of minimum 2-connectivity, tsp and path problems. In: Proc. 13th ACM–SIAM Symposium on Discrete Algorithms, pp. 74–83 (2002)

    Google Scholar 

  9. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem, Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh (1976)

    Google Scholar 

  10. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman on a graph and some related integer polyhedra. Math. Programming 33, 1–27 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. of Res. National Bureau of Standards B 69, 125–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fotakis, D., Spirakis, P.: Graph properties that facilitate travelling. Electronic Colloquium on Computational Complexity 31, 1–18 (1998)

    Google Scholar 

  13. Fulkerson, D.: Blocking and anti-blocking pairs of polyhedra. Math Programming 1, 168–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper bound for the TSP in cubic 3-edge-connected graphs. OR Letters 33, 467–474 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Garey, M., Johnson, D., Tarjan, R.: The planar hamiltonian circuit problem is NP-complete. SIAM Journal of Computing 5, 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gharan, S.O., Saberi, A., Singh, M.: A Randomized Rounding Approach to the Traveling Salesman Problem (2011) (manuscript)

    Google Scholar 

  17. Grigni, M., Koutsoupias, E., Papadimitriou, C.: An approximation scheme for planar graph TSP. In: Proc. 36th Annual Symposium on Foundations of Computer Science, pp. 640–645 (1995)

    Google Scholar 

  18. Hartvigsen, D., Li, Y.: Maximum cardinality simple 2-matchings in subcubic graphs, University of Notre Dame (2009) (manuscript)

    Google Scholar 

  19. Kaiser, T., Král’, D., Norine, S.: Unions of perfect matchings in cubic graphs. Electronic Notes in Discrete Math. 22, 341–345 (2005)

    Article  MATH  Google Scholar 

  20. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem–A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)

    MATH  Google Scholar 

  21. Naddef, D., Pulleyblank, W.: Matchings in regular graphs. Discrete Math. 34, 283–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadimitriou, C., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18, 1–11 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersen, J.: Die Theorie der regulären graphen. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  24. Shmoys, D., Williamson, D.: Analyzing the Held-Karp TSP bound: A monotonicity property with application. Information Processing Letters 35, 281–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolsey, L.: Heuristic analysis, linear programming and branch and bound. Math. Programming Study 13, 121–134 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyd, S., Sitters, R., van der Ster, S., Stougie, L. (2011). TSP on Cubic and Subcubic Graphs. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics