Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Chvátal-Gomory Closure of a Compact Convex Set

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

In this paper, we show that the Chvátal-Gomory closure of any compact convex set is a rational polytope. This resolves an open question of Schrijver [15] for irrational polytopes, and generalizes the same result for the case of rational polytopes [15], rational ellipsoids [7] and strictly convex bodies [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2001)

    Google Scholar 

  2. Bonami, P., Dash, G.C.S., Fischetti, M., Lodi, A.: Projected Chvatal-Gomory Cuts for Mixed Integer Linear Programs. Mathematical Programming 113, 241–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassels, J.W.S.: An introduction to Diophantine approximation. Hafner, New York (1972)

    MATH  Google Scholar 

  4. Çezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical Programming 104, 179–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of Strictly Convex Body (2010) (to appear in Mathematics of Operations Research)

    Google Scholar 

  7. Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 327–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dunkel, J., Schulz, A.S.: The Gomory-chvátal closure of a non-rational polytope is a rational polytope (2010), http://www.optimization-online.org/DB_HTML/2010/11/2803.html

  9. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of mathematics 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathematical Programming, Series B 110, 3–20 (2007)

    Article  MATH  Google Scholar 

  11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society 64, 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem I: Inequalities. Math. Programming 16, 265–280 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem II: Lifting theorems and facets. Math. Programming 16, 281–302 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Niven, I.M.: Diophantine approximations. Interscience Publishers, New York (1963)

    MATH  Google Scholar 

  15. Schrijver, A.: On cutting planes. Annals of Discrete Mathematics 9, 291–296 (1980); combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dadush, D., Dey, S.S., Vielma, J.P. (2011). On the Chvátal-Gomory Closure of a Compact Convex Set. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics