Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multiple-Conclusion Calculus for First-Order Gödel Logic

  • Conference paper
Computer Science – Theory and Applications (CSR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6651))

Included in the following conference series:

Abstract

We present a multiple-conclusion hypersequent system for the standard first-order Gödel logic. We provide a constructive, direct, and simple proof of the completeness of the cut-free part of this system, thereby proving both completeness for its standard semantics, and the admissibility of the cut rule in the full system. The results also apply to derivations from assumptions (or “non-logical axioms”), showing that such derivations can be confined to those in which cuts are made only on formulas which occur in the assumptions. Finally, the results about the multiple-conclusion system are used to show that the usual single-conclusion system for the standard first-order Gödel logic also admits (strong) cut-admissibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free Tableaux Calculi Together with Cut-free and Contraction-free Sequent Calculi for the Interpolable Propositional Intermediate Logics. Logic J. IGPL 7, 447–480 (1999)

    Article  MATH  Google Scholar 

  2. Avron, A.: Using Hypersequents in Proof Systems for Non-classical Logics. Annals of Mathematics and Artificial Intelligence 4, 225–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Automated Reasoning 10, 265–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avron, A.: A Simple Proof of Completeness and Cut-admissibility for Propositional Gödel Logic. Journal of Logic and Computation (2009), doi:10.1093/logcom/exp055

    Google Scholar 

  5. Avron, A., Konikowska, B.: Decomposition Proof Systems for Gödel Logics. Studia Logica 69, 197–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent Calculi for Gödel Logics - a Survey. Journal of Logic and Computation 13, 835–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baaz, M., Preining, N., Zach, R.: First-order Gödel Logics. Annals of Pure and Applied Logic 147, 23–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baaz, M., Zach, R.: Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Ciabattoni, A., Galatos, N., Terui, K.: From Axioms to Analytic Rules in Nonclassical Logics. In: Proceedings of LICS, pp. 229–240 (2008)

    Google Scholar 

  10. Corsi, G.: Semantic Trees for Dummett’s Logic LC. Studia Logica 45, 199–206 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyckhoff, D.: A Deterministic Terminating Sequent Calculus for Gödel-Dummett Logic. Logic J. IGPL 7, 319–326 (1999)

    Article  MATH  Google Scholar 

  12. Dyckhoff, D., Negri, S.: Decision Methods for Linearly Ordered Heyting Algebras. Archive for Mathematical Logic 45, 411–422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dummett, M.: A Propositional Calculus with a Denumerable matrix. Journal of Symbolic Logic 24, 96–107 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabbay, D.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrechtz (1983)

    MATH  Google Scholar 

  15. Gödel, K.: On the Intuitionistic Propositional Calculus. In: Feferman, S., et al. (eds.) Collected Work, vol. 1, Oxford University Press, Oxford (1986)

    Google Scholar 

  16. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  17. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  18. Sonobe, O.: A Gentzen-type Formulation of Some Intermediate Propositional Logics. Journal of Tsuda College 7, 7–14 (1975)

    MathSciNet  Google Scholar 

  19. Takano, M.: P Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba J. Math. 11, 851–866 (1984)

    MathSciNet  Google Scholar 

  20. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  21. Takeuti, G., Titani, T.: Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set Theory. Journal of Symbolic Logic 49, 851–866 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avron, A., Lahav, O. (2011). A Multiple-Conclusion Calculus for First-Order Gödel Logic. In: Kulikov, A., Vereshchagin, N. (eds) Computer Science – Theory and Applications. CSR 2011. Lecture Notes in Computer Science, vol 6651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20712-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20712-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20711-2

  • Online ISBN: 978-3-642-20712-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics