Nothing Special   »   [go: up one dir, main page]

Skip to main content

CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Included in the following conference series:

Abstract

In real life we are often confronted with dynamic optimization problems whose optima change over time. These problems challenge traditional optimization methods as well as conventional evolutionary optimization algorithms. In this paper, we propose an evolutionary model that combines the differential evolution algorithm with cellular automata to address dynamic optimization problems. In the proposed model, called CellularDE, a cellular automaton partitions the search space into cells. Individuals in each cell, which implicitly create a subpopulation, are evolved by the differential evolution algorithm to find the local optimum in the cell neighborhood. Experimental results on the moving peaks benchmark show that CellularDE outperforms DynDE, cellular PSO, FMSO, and mQSO in most tested dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic environments. Evolutionary Computation 16, 385–416 (2008)

    Article  Google Scholar 

  2. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Männer, R., Manderick, B. (eds.) Proc. of the 2nd Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)

    Google Scholar 

  3. Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithms with dominance and diploidy, pp. 59–68. L. Erlbaum Associates Inc., Mahwah (1987)

    Google Scholar 

  4. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm, vol. 3, pp. 2246–2253. IEEE, Los Alamitos (2004)

    Google Scholar 

  5. Cobb, H.G., Grefenstette, J.J.: Genetic Algorithms for Tracking Changing Environments. In: Proceedings of the 5th International Conference on Genetic Algorithms, June 01, pp. 523–530 (1993)

    Google Scholar 

  6. Morrison, R., De Jong, K.: Triggered hypermutation revisited, vol. 2, pp. 1025–1032. IEEE, Los Alamitos (2002)

    Google Scholar 

  7. Mendes, R., Mohais, A.: DynDE: a differential evolution for dynamic optimization problems, vol. 3, pp. 2808–2815. IEEE, Los Alamitos (2005)

    Google Scholar 

  8. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Transactions on Evolutionary Computation 10, 440–458 (2006)

    Article  Google Scholar 

  9. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)

    Article  Google Scholar 

  10. Moser, I., Chiong, R.: Dynamic function optimisation with hybridised extremal dynamics. Memetic Computing 2, 137–148 (2010)

    Article  Google Scholar 

  11. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Price, K., Storn, R., Lampinen, J.: Differential evolution: a practical approach to global optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  13. du Plessis, M., Engelbrecht, A.: Improved differential evolution for dynamic optimization problems, pp. 229–234. IEEE, Los Alamitos (2008)

    Google Scholar 

  14. Brest, J., Zamuda, A., Boskovic, B., Maucec, M., Zumer, V.: Dynamic optimization using self-adaptive differential evolution, pp. 415–422. IEEE, Los Alamitos (2009)

    Google Scholar 

  15. Kanlikilicer, A., Keles, A., Uyar, A.: Experimental analysis of binary differential evolution in dynamic environments, pp. 2509–2514. ACM, New York (2007)

    Google Scholar 

  16. Hashemi, A.B., Meybodi, M.: A multi-role cellular PSO for dynamic environments, pp. 412–417. IEEE, Los Alamitos (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5349615

    Google Scholar 

  17. Hashemi, A.B., Meybodi, M.: Cellular PSO: A PSO for dynamic environments. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 422–433. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Li, C., Yang, S.: Fast multi-swarm optimization for dynamic optimization problems, vol. 7, pp. 624–628. IEEE, Los Alamitos (2008)

    Google Scholar 

  19. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10, 459–472 (2006)

    Article  Google Scholar 

  20. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Evolutionary Computation in Dynamic and Uncertain Environments, pp. 29–49 (2007)

    Google Scholar 

  21. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems, vol. 3. IEEE, Los Alamitos (2002)

    MATH  Google Scholar 

  22. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Publishers, Norwell (2001)

    MATH  Google Scholar 

  23. Fredkin, E.: An informational process based on reversible universal cellular automata. Physica D: Nonlinear Phenomena 45, 254–270 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noroozi, V., Hashemi, A.B., Meybodi, M.R. (2011). CellularDE: A Cellular Based Differential Evolution for Dynamic Optimization Problems. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics