Nothing Special   »   [go: up one dir, main page]

Skip to main content

Crowd-Powered TV Viewing Rates: Measuring Relevancy between Tweets and TV Programs

  • Conference paper
Database Systems for Adanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6637))

Included in the following conference series:

Abstract

Due to the advance of many social networking sites, social analytics by aggregating and analyzing crowds’ life logs are attracting a great deal of attention. In the meantime, there is an interesting trend that people watching TVs are also writing Twitter messages pertaining to their opinions. With the utilization of bigger and broader crowds over Twitter, surveying massive audiences’ lifestyles will be an important aspect of exploitation of crowd-sourced data. In this paper, for better TV viewing rates in the light of the evolving TV lifestyles beyond home environments, we propose a TV rating method by means of Twitter where we can easily find crowd voices relative to TV watching. In the experiment, we describe our exploratory survey to exploit a large amount of Twitter messages to populate TV programs and on-line video sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence on Twitter: The Million Follower Fallacy. In: Proc. of the 4th International AAAI Conference on Weblogs and Social Media, ICWSM 2010 (2010)

    Google Scholar 

  2. Diakopoulos, N.A., Shamma, D.A.: Characterizing debate performance via aggregated twitter sentiment. In: Proc. of the 28th International Conference on Human Factors in Computing Systems (CHI 2010), pp. 1195–1198 (2010)

    Google Scholar 

  3. French, J.C., Powell, A.L., Schulman, E.: Applications of approximate word matching in information retrieval. In: Proc. of the 6th International Conference on Information and Knowledge Management, CIKM 1997 (1997)

    Google Scholar 

  4. Fujisaka, T., Lee, R., Sumiya, K.: Monitoring Geo-Social Activities through Micro-Blogging Sites. In: Proc. of the 1st International Workshop on Social Networks and Social Media Mining on the Web, SNSMW 2010 (2010)

    Google Scholar 

  5. Google maps API, http://code.google.com/intl/ja/apis/maps/

  6. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding micro-blogging usage and communities. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439, pp. 56–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: Proc. of the 1st Workshop on Online Social Networks (WOSN 2008), pp. 19–24 (2008)

    Google Scholar 

  8. O’Connor, B., Balasubramanyan, R., Routedge, B., Smith, N.: From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. In: Proc. of the 4th International AAAI Conference on Weblogs and Social Media, ICWSM 2010 (2010)

    Google Scholar 

  9. Sawai, R., Ariyasu, K., Fujisawa, H., Kanatsugu, Y.: TV Program Recommendation Method Using SNS Based on Collaborative Filtering, IPSJ SIG Technical Reports, Vol. 2010-DBS-151, No. 43 (2010) (in Japanese)

    Google Scholar 

  10. Zhao, D., Rosson, M.B.: How and why people Twitter: the role that micro-blogging plays in informal communication at work. In: Proc. of the ACM 2009 International Conference on Supporting Group Work (GROUP 2009), pp. 243–252 (2009)

    Google Scholar 

  11. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys (CSUR 2006) 38(2), Article 6 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wakamiya, S., Lee, R., Sumiya, K. (2011). Crowd-Powered TV Viewing Rates: Measuring Relevancy between Tweets and TV Programs. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20244-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20243-8

  • Online ISBN: 978-3-642-20244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics