Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Local Information Passing Clustering Algorithm for Tagging Systems

  • Conference paper
Database Systems for Adanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6637))

Included in the following conference series:

Abstract

Under social tagging systems, a typical Web2.0 application, users label digital data sources by using tags which are freely chosen textual descriptions. Tags are used to index, annotate and retrieve resource as an additional metadata of resource. Poor retrieval performance remains a major problem of most social tagging systems resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to increase the ability of information retrieval in the aforementioned systems. In this paper, we propose a novel clustering algorithm named LIPC (Local Information Passing Clustering algorithm). The main steps of LIPC are: (1) we estimate a KNN neighbor directed graph G of tags and calculate the kernel density of each tag in its neighborhood; (2) we generate local information, local coverage and local kernel of each tag; (3) we pass the local information on G by I and O operators until they are converged and tag priory are generated; (4) we use tag priory to find out the clusters of tags. Experimental results on two real world datasets namely MedWorm and MovieLens demonstrate the efficiency and the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gemmell, J., Shepitsen, A., Mobasher, M., Burke, R.: Personalization in folksonomies based on tag clustering. In: Proceedings of the 6th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (July 2008)

    Google Scholar 

  2. Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 259–266. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Hayes, C., Avesani, P.: Using tags and clustering to identify topic-relevant blogs. In: International Conference on Weblogs and Social Media (March 2007)

    Google Scholar 

  4. Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search results. In: CHI 2000: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 145–152. ACM, New York (2000)

    Google Scholar 

  5. van Dam, J.W., Vandic, D., Hogenboom, F., et al.: Searching and browsing tag spaces using the semantic tag clustering search framework. In: IEEE Fourth International Conference on Semantic Computing (2010)

    Google Scholar 

  6. Lehwark, P., Risi, S., Ultsch, A.: Visualization and Clustering of Tagged Music Data, pp. 673–680. GfKl, Berlin (2007)

    Google Scholar 

  7. Miao, G.X., Tatemura, J.C., Hsiung, W.P., et al.: Extracting data records from the web using tag path clustering. In: Proceedings of the 18th International Conference on World Wide Web, Spain (April 2009)

    Google Scholar 

  8. Giannakidou, E., Koutsonikola, V., Vakali, A., et al.: Co-clustering tags and social data sources. In: 9th International Conference on Web-age Information Managemnet, pp. 317–324 (July 2008)

    Google Scholar 

  9. Guan, Z., Bu, J., Mei, Q., et al.: Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Allan et al. [1], pp. 540–547

    Google Scholar 

  10. Guan, Z., Wang, C., Bu, J., et al.: Document recommendation in social tagging services. In: Rappa, M., Jones, P., Freire, J., Charkrabarti, S. (eds.) WWW, pp. 391–400. ACM, New York (2010)

    Google Scholar 

  11. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Lin, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proceeding of the 17th International World Wide Web Conference (2008)

    Google Scholar 

  13. Liu, H., Lafferty, J., Wasserman, L.: Sparse nonparametric density estimation in high dimensions using the rodeo. In: 11th International Conference on Artificial Intelligence and Statistics, AISTATS (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zong, Y., Xu, G., Jin, P., Dolog, P., Jiang, S. (2011). A Local Information Passing Clustering Algorithm for Tagging Systems. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20244-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20243-8

  • Online ISBN: 978-3-642-20244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics