Abstract
Under social tagging systems, a typical Web2.0 application, users label digital data sources by using tags which are freely chosen textual descriptions. Tags are used to index, annotate and retrieve resource as an additional metadata of resource. Poor retrieval performance remains a major problem of most social tagging systems resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to increase the ability of information retrieval in the aforementioned systems. In this paper, we propose a novel clustering algorithm named LIPC (Local Information Passing Clustering algorithm). The main steps of LIPC are: (1) we estimate a KNN neighbor directed graph G of tags and calculate the kernel density of each tag in its neighborhood; (2) we generate local information, local coverage and local kernel of each tag; (3) we pass the local information on G by I and O operators until they are converged and tag priory are generated; (4) we use tag priory to find out the clusters of tags. Experimental results on two real world datasets namely MedWorm and MovieLens demonstrate the efficiency and the superiority of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gemmell, J., Shepitsen, A., Mobasher, M., Burke, R.: Personalization in folksonomies based on tag clustering. In: Proceedings of the 6th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems (July 2008)
Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 259–266. ACM, New York (2008)
Hayes, C., Avesani, P.: Using tags and clustering to identify topic-relevant blogs. In: International Conference on Weblogs and Social Media (March 2007)
Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search results. In: CHI 2000: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 145–152. ACM, New York (2000)
van Dam, J.W., Vandic, D., Hogenboom, F., et al.: Searching and browsing tag spaces using the semantic tag clustering search framework. In: IEEE Fourth International Conference on Semantic Computing (2010)
Lehwark, P., Risi, S., Ultsch, A.: Visualization and Clustering of Tagged Music Data, pp. 673–680. GfKl, Berlin (2007)
Miao, G.X., Tatemura, J.C., Hsiung, W.P., et al.: Extracting data records from the web using tag path clustering. In: Proceedings of the 18th International Conference on World Wide Web, Spain (April 2009)
Giannakidou, E., Koutsonikola, V., Vakali, A., et al.: Co-clustering tags and social data sources. In: 9th International Conference on Web-age Information Managemnet, pp. 317–324 (July 2008)
Guan, Z., Bu, J., Mei, Q., et al.: Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Allan et al. [1], pp. 540–547
Guan, Z., Wang, C., Bu, J., et al.: Document recommendation in social tagging services. In: Rappa, M., Jones, P., Freire, J., Charkrabarti, S. (eds.) WWW, pp. 391–400. ACM, New York (2010)
Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)
Lin, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proceeding of the 17th International World Wide Web Conference (2008)
Liu, H., Lafferty, J., Wasserman, L.: Sparse nonparametric density estimation in high dimensions using the rodeo. In: 11th International Conference on Artificial Intelligence and Statistics, AISTATS (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zong, Y., Xu, G., Jin, P., Dolog, P., Jiang, S. (2011). A Local Information Passing Clustering Algorithm for Tagging Systems. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-20244-5_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20243-8
Online ISBN: 978-3-642-20244-5
eBook Packages: Computer ScienceComputer Science (R0)