Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models

  • Conference paper
Advances in Information Retrieval (ECIR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6611))

Included in the following conference series:

Abstract

In this paper we investigate the use of latent variable structured prediction models for fine-grained sentiment analysis in the common situation where only coarse-grained supervision is available. Specifically, we show how sentence-level sentiment labels can be effectively learned from document-level supervision using hidden conditional random fields (HCRFs) [10]. Experiments show that this technique reduces sentence classification errors by 22% relative to using a lexicon and 13% relative to machine-learning baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Choi, Y., Cardie, C.: Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In: Proc. EMNLP (2009)

    Google Scholar 

  2. Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: Proc. EACL (1997)

    Google Scholar 

  3. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proc. KDD (2004)

    Google Scholar 

  4. Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Proc. COLING (2004)

    Google Scholar 

  5. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML (2001)

    Google Scholar 

  6. McDonald, R., Hannan, K., Neylon, T., Wells, M., Reynar, J.: Structured models for fine-to-coarse sentiment analysis. In: Proc. ACL (2007)

    Google Scholar 

  7. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables. In: Proc. NAACL (2010)

    Google Scholar 

  8. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Now Publishers (2008)

    Google Scholar 

  9. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proc. EMNLP (2002)

    Google Scholar 

  10. Quattoni, A., Wang, S., Morency, L.-P., Collins, M., Darrell, T.: Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2007)

    Google Scholar 

  11. Turney, P.: Thumbs up or thumbs down? Sentiment orientation applied to unsupervised classification of reviews. In: Proc. ACL (2002)

    Google Scholar 

  12. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proc. EMNLP (2005)

    Google Scholar 

  13. Yessenalina, A., Yue, Y., Cardie, C.: Multi-level structured models for document-level sentiment classification. In: Proc. EMNLP (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Täckström, O., McDonald, R. (2011). Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models. In: Clough, P., et al. Advances in Information Retrieval. ECIR 2011. Lecture Notes in Computer Science, vol 6611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20161-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20161-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20160-8

  • Online ISBN: 978-3-642-20161-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics