Abstract
In this paper we investigate the use of latent variable structured prediction models for fine-grained sentiment analysis in the common situation where only coarse-grained supervision is available. Specifically, we show how sentence-level sentiment labels can be effectively learned from document-level supervision using hidden conditional random fields (HCRFs) [10]. Experiments show that this technique reduces sentence classification errors by 22% relative to using a lexicon and 13% relative to machine-learning baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choi, Y., Cardie, C.: Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In: Proc. EMNLP (2009)
Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: Proc. EACL (1997)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proc. KDD (2004)
Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Proc. COLING (2004)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML (2001)
McDonald, R., Hannan, K., Neylon, T., Wells, M., Reynar, J.: Structured models for fine-to-coarse sentiment analysis. In: Proc. ACL (2007)
Nakagawa, T., Inui, K., Kurohashi, S.: Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables. In: Proc. NAACL (2010)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Now Publishers (2008)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proc. EMNLP (2002)
Quattoni, A., Wang, S., Morency, L.-P., Collins, M., Darrell, T.: Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence (2007)
Turney, P.: Thumbs up or thumbs down? Sentiment orientation applied to unsupervised classification of reviews. In: Proc. ACL (2002)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proc. EMNLP (2005)
Yessenalina, A., Yue, Y., Cardie, C.: Multi-level structured models for document-level sentiment classification. In: Proc. EMNLP (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Täckström, O., McDonald, R. (2011). Discovering Fine-Grained Sentiment with Latent Variable Structured Prediction Models. In: Clough, P., et al. Advances in Information Retrieval. ECIR 2011. Lecture Notes in Computer Science, vol 6611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20161-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-20161-5_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20160-8
Online ISBN: 978-3-642-20161-5
eBook Packages: Computer ScienceComputer Science (R0)