Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rule Extraction for Support Vector Machine Using Input Space Expansion

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6592))

Included in the following conference series:

  • 1460 Accesses

Abstract

Fuzzy Rule-Based System (FRB) in the form of human comprehensible IF-THEN rules can be extracted from Support Vector Machine (SVM) which is regarded as a black-boxed system. We first prove that SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS) are equivalent indicating that SVM’s decision can actually be represented by fuzzy IF-THEN rules. We then propose a rule extraction method based on kernel function firing strength and unbounded support vector space expansion. An advantage of our method is the guarantee that the number of final fuzzy IF-THEN rules is equal or less than the number of support vectors in SVM, and it may reveal human comprehensible patterns. We compare our method against SVM using popular benchmark data sets, and the results are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aeberhard S., Coomans D., de Vel, O.: The Classification Performance of RDA. Tech. Rep., no. 92-01 (1992)

    Google Scholar 

  2. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8(6), 373–389 (1995)

    Article  MATH  Google Scholar 

  3. Barakat, N., Diederich, J.: Eclectic Rule-Extraction from Support Vector Machines. International Journal of Computational Intelligence 2(1), 59–62 (2005)

    Google Scholar 

  4. Diederich, J. (ed.): Rule Extraction from Support Vector Machines. SCI, vol. 80, pp. 3–30. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  5. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics 7(Part II), 179–188 (1936)

    Article  Google Scholar 

  6. Fung, G., Sandilya, S., Rao, R.B.: Rule extraction from linear support vector machines. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 32–40 (2005)

    Google Scholar 

  7. Haberman, S.J.: Generalized Residuals for Log-Linear Models. In: Proceedings of the 9th International Biometrics Conference, Boston, pp. 104–122 (1976)

    Google Scholar 

  8. Huysmans, J., Baesens, B., Vanthienen, J.: ITER: An algorithm for predictive regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 270–279. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Huysmans, J., Setiono, R., Baesens, B., Vanthienen, J.: Minerva: Sequential Covering for Rule Extraction. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 38(2), 299–309 (2008)

    Article  MATH  Google Scholar 

  10. Jang, J.S.R., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Networks 4, 156–158 (1992)

    Article  Google Scholar 

  11. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, pp. 333–342. Prentice Hall International, Englewood Cliffs (1997)

    Google Scholar 

  12. Kolman, E., Margaliot, M.: Are artificial neural networks white boxes? IEEE Trans. Neural Networks 16(4), 844–852 (2005)

    Article  Google Scholar 

  13. Kumar, S.: Neural Networks: A Classroom Approach, International Edition, pp. 273–304. McGraw-Hill, New York (2005)

    Google Scholar 

  14. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis. Artificial Intelligence in Medicine 23(2), 149–169 (2001)

    Article  Google Scholar 

  15. Nunez, H., Angulo, C., Catala, A.: Rule Extraction Based on Support and Prototype Vectors. SCI, vol. 80, pp. 109–134. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  16. Sigillito, V.J., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest 10, 262–266 (1989)

    Google Scholar 

  17. Vapnik, V.N.: Statistical Learning Theory, pp. 375–520. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  18. Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 87, 9193–9196 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitiranggon, P., Benjathepanun, N., Banditvilai, S., Boonjing, V. (2011). Rule Extraction for Support Vector Machine Using Input Space Expansion. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20042-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20042-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20041-0

  • Online ISBN: 978-3-642-20042-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics