Nothing Special   »   [go: up one dir, main page]

Skip to main content

Protein Loop Closure Using Orientational Restraints from NMR Data

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Protein loops often play important roles in biological functions such as binding, recognition, catalytic activities and allosteric regulation. Modeling loops that are biophysically sensible is crucial to determining the functional specificity of a protein. A variety of algorithms ranging from robotics-inspired inverse kinematics methods to fragmentbased homology modeling techniques have been developed to predict protein loops. However, determining the 3D structures of loops using global orientational restraints on internuclear vectors, such as those obtained from residual dipolar coupling (RDC) data in solution Nuclear Magnetic Resonance (NMR) spectroscopy, has not been well studied. In this paper, we present a novel algorithm that determines the protein loop conformations using a minimal amount of RDC data. Our algorithm exploits the interplay between the sphero-conics derived from RDCs and the protein kinematics, and formulates the loop structure determination problem as a system of low-degree polynomial equations that can be solved exactly and in closed form. The roots of these polynomial equations, which encode the candidate conformations, are searched systematically, using efficient and provable pruning strategies that triage the vast majority of conformations, to enumerate or prune all possible loop conformations consistent with the data. Our algorithm guarantees completeness by ensuring that a possible loop conformation consistent with the data is never missed. This data-driven algorithm provides a way to assess the structural quality from experimental data with minimal modeling assumptions. We applied our algorithm to compute the loops of human ubiquitin, the FF Domain 2 of human transcription elongation factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the third IgG-binding domain of Protein G (GB3) from experimental RDC data. A comparison of our results versus those obtained by using traditional structure determination protocols on the same data shows that our algorithm is able to achieve higher accuracy: a 3- to 6-fold improvement in backbone RMSD. In addition, computational experiments on synthetic RDC data for a set of protein loops of length 4, 8 and 12 used in previous studies show that, whenever sparse RDCs can be measured, our algorithm can compute longer loops with high accuracy. These results demonstrate that our algorithm can be successfully applied to compute loops with high accuracy from a limited amount of NMR data. Our algorithm will be useful to determine high-quality complete protein backbone conformations, which will benefit the nuclear Overhauser effect (NOE) assignment process in high-resolution protein structure determination.

This work is supported by the following grants from National Institutes of Health: R01 GM-65982 to B.R.D. and R01 GM-079376 to P.Z.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrec, M., et al.: J. Biomol. NMR 21, 335–347 (2004)

    Article  Google Scholar 

  2. Baker, D., Sali, A.: Science 294, 93–96 (2001)

    Article  Google Scholar 

  3. Berman, H.M., et al.: Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  4. Bouvignies, G., et al.: Angewandte Chemie 118, 8346–8349 (2006)

    Article  Google Scholar 

  5. Bruccoleri, R.E., Karplus, M.: Macromolecules 29, 1847–1862 (1990)

    Google Scholar 

  6. Brünger, A.T.: Yale University Press, New Haven (1992)

    Google Scholar 

  7. Buchbinder, J.L., Fletterick, R.J.: J. Biol. Chem. 271(37), 22305–22309 (1996)

    Article  Google Scholar 

  8. Canutescu, A.A., Dunbrack Jr., R.L.: Protein Sci. 12(5), 963–972 (2003)

    Article  Google Scholar 

  9. Casey, J.: Proceedings of the Royal Society of London XIX, 495–497 (1871)

    Google Scholar 

  10. Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106(10), 3764–3769 (2009)

    Article  Google Scholar 

  11. Chirikjian, G.S.: In: Proceedings of IROS, vol. 2, pp. 1067–1073 (1993)

    Google Scholar 

  12. Clore, G.M., et al.: J. Magn. Reson. 131, 159–162 (1998)

    Article  Google Scholar 

  13. Collura, V., et al.: Protein Sci. 2, 1502–1510 (1993)

    Article  Google Scholar 

  14. Cornilescu, G., et al.: J. Biomol. NMR 13, 289–302 (1999)

    Article  Google Scholar 

  15. Cornilescu, G., et al.: J. Am. Chem. Soc. 120, 6836–6837 (1998)

    Article  Google Scholar 

  16. Cortés, J., et al.: J. Comput. Chem. 25(7), 956–967 (2004)

    Article  Google Scholar 

  17. Coutsias, E.A., et al.: J. Comput. Chem. 25, 510–528 (2004)

    Article  Google Scholar 

  18. Delaglio, F., et al.: J. Am. Chem. Soc. 122, 2142–2143 (2000)

    Article  Google Scholar 

  19. Donald, B.R., Martin, J.: Prog. NMR Spectrosc. 55(2), 101–127 (2009)

    Article  Google Scholar 

  20. Du, P., et al.: Protein Engineering 16(6), 407–414 (2003)

    Article  Google Scholar 

  21. Fine, R.M., et al.: Proteins 1(4), 342–362 (1986)

    Article  Google Scholar 

  22. Fiser, A., et al.: Protein Sci. 9(9), 1753–1773 (2000)

    Article  Google Scholar 

  23. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)

    Article  Google Scholar 

  24. Georgiev, I., et al.: J. Comput. Chem. 29, 1527–1542 (2008)

    Article  Google Scholar 

  25. Giesen, A.W., et al.: J. Biomol. NMR 25, 63–71 (2003)

    Article  Google Scholar 

  26. Gō, N., Scheraga, H.A.: Macromolecules 3, 178–187 (1970)

    Article  Google Scholar 

  27. Gorczynski, M.J., et al.: Chemistry & Biology 14(10), 1186–1197 (2007)

    Article  Google Scholar 

  28. Güntert, P.: Prog NMR Spectrosc. 43, 105–125 (2003)

    Article  Google Scholar 

  29. Hu, X., et al.: Proc. Natl. Acad. Sci. USA 104(45), 17668–17673 (2007)

    Article  Google Scholar 

  30. Koehl, P., Delarue, M.: Nat. Struct. Biol. 2, 163–170 (1995)

    Article  Google Scholar 

  31. Kolodny, R., et al.: Int. J. Robot Res. 24, 151–163 (2005)

    Article  Google Scholar 

  32. Kuszewski, J., et al.: J. Am. Chem. Soc. 126(20), 6258–6273 (2004)

    Article  Google Scholar 

  33. Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 209–217 (2003)

    Google Scholar 

  34. Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 278–289 (2004)

    Google Scholar 

  35. Lilien, R.H., et al.: J. Comput. Biol. 12(6), 740–761 (2005)

    Article  Google Scholar 

  36. Liu, P., et al.: PLoS Comput. Biol. 5(8), e1000478 (2009)

    Article  Google Scholar 

  37. Losonczi, J.A., et al.: J. Magn. Reson. 138, 334–342 (1999)

    Article  Google Scholar 

  38. Lovell, S.C., et al.: Proteins 50, 437–450 (2003)

    Article  Google Scholar 

  39. Manocha, D., Canny, J.F.: IEEE T. Robotic Autom. 10, 648–657 (1994)

    Article  Google Scholar 

  40. Milgram, R.J., et al.: J. Comput. Chem. 29(1), 50–68 (2008)

    Article  Google Scholar 

  41. Mumenthaler, C., et al.: J. Biomol. NMR 10(4), 351–362 (1997)

    Article  Google Scholar 

  42. Pesce, S., Benezara, R.: Mol. Cell. Biol. 13(12), 7874–7880 (1993)

    Article  Google Scholar 

  43. Prestegard, J.H., et al.: Chemical Reviews 104, 3519–3540 (2004)

    Article  Google Scholar 

  44. Ramirez, B.E., Bax, A.: J. Am. Chem. Soc. 120, 9106–9107 (1998)

    Article  Google Scholar 

  45. Ramirez, B.E., et al.: Protein Sci. 9, 2161–2169 (2000)

    Article  Google Scholar 

  46. Rohl, C.A., Baker, D.: J. Am. Chem. Soc. 124, 2723–2729 (2002)

    Article  Google Scholar 

  47. Salmon, G.: Longmans, Green and Company, London (1912)

    Google Scholar 

  48. Salmon, L., et al.: Angew Chem. Int. Edit. 48(23), 4154–4157 (2009)

    Article  Google Scholar 

  49. Saupe, A.: Angewandte Chemie 7(2), 97–112 (1968)

    Article  Google Scholar 

  50. Saxe, J.B.: In: Proc. 17th Allerton Conf. Comm., Ctrl. Comput., pp. 480–489 (1979)

    Google Scholar 

  51. Schwieters, C.D., et al.: J. Magn. Reson. 160, 65–73 (2003)

    Article  Google Scholar 

  52. Shehu, A., et al.: Proteins 65(1), 164–179 (2006)

    Article  Google Scholar 

  53. Shen, Y., et al.: J. Biomol. NMR 44, 213–223 (2009)

    Article  Google Scholar 

  54. Shenkin, P.S., et al.: Biopolymers 26(12), 2053–2085 (1987)

    Article  Google Scholar 

  55. Shi, L., Javitch, J.A.: Proc. Natl. Acad. Sci. USA 101(2), 440–445 (2004)

    Article  Google Scholar 

  56. Tian, F., et al.: J. Am. Chem. Soc. 123, 11791–11796 (2001)

    Article  Google Scholar 

  57. Tjandra, N., Bax, A.: Science 278, 1111–1114 (1997)

    Article  Google Scholar 

  58. Tolman, J.R., et al.: Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995)

    Article  Google Scholar 

  59. Tolman, J.R., et al.: Nat. Struct. Biol. 4(4), 292–297 (1997)

    Article  Google Scholar 

  60. Tosatto, S.C.E., et al.: Protein Engineering 15(4), 279–286 (2002)

    Article  MathSciNet  Google Scholar 

  61. Tripathy, C., Zeng, J., Zhou, P., Donald, B.R.: Supporting Information (2011), http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/pool/

  62. Ulmer, T.S., et al.: J. Am. Chem. Soc. 125, 9179–9191 (2003)

    Article  Google Scholar 

  63. Ulrich, E.L., et al.: Nucleic Acids Res. 36(Database issue), D402–D408 (2008)

    Google Scholar 

  64. van Vlijmen, H.W.T., Karplus, M.: J. Mol. Biol. 267, 975–1001 (1997)

    Article  Google Scholar 

  65. Wang, C., et al.: J. Mol. Biol. 373(2), 503–519 (2007)

    Article  Google Scholar 

  66. Wang, L., Donald, B.R.: J. Biomol. NMR 29(3), 223–242 (2004)

    Article  Google Scholar 

  67. Wang, L., Donald, B.R.: In: Proceedings of CSB, pp. 189–202 (2005)

    Google Scholar 

  68. Wang, L., et al.: J. Comput. Biol. 13(7), 1276–1288 (2006)

    Article  Google Scholar 

  69. Wedemeyer, W.J., Scheraga, H.A.: J. Comput. Chem. 20(8), 819–844 (1999)

    Article  Google Scholar 

  70. Word, J.M., et al.: J. Mol. Biol. 285, 1711–1733 (1999)

    Article  Google Scholar 

  71. Yershova, A., et al.: In: Proceedings of WAFR, vol. 68, pp. 355–372 (2010)

    Google Scholar 

  72. Zeng, J., et al.: J. Biomol. NMR 45(3), 265–281 (2009)

    Article  Google Scholar 

  73. Zeng, J., et al.: In: Proceedings of CSB, pp. 169–181 (2008) ISBN 1752–7791

    Google Scholar 

  74. Zeng, J., et al.: A markov random field framework for protein side-chain resonance assignment. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 550–570. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  75. Zweckstetter, M.: Nat. Protoc. 3, 679–690 (2008)

    Article  Google Scholar 

  76. Zweckstetter, M., Bax, A.: J. Am. Chem. Soc. 122(15), 3791–3792 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tripathy, C., Zeng, J., Zhou, P., Donald, B.R. (2011). Protein Loop Closure Using Orientational Restraints from NMR Data. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics