Abstract
Protein loops often play important roles in biological functions such as binding, recognition, catalytic activities and allosteric regulation. Modeling loops that are biophysically sensible is crucial to determining the functional specificity of a protein. A variety of algorithms ranging from robotics-inspired inverse kinematics methods to fragmentbased homology modeling techniques have been developed to predict protein loops. However, determining the 3D structures of loops using global orientational restraints on internuclear vectors, such as those obtained from residual dipolar coupling (RDC) data in solution Nuclear Magnetic Resonance (NMR) spectroscopy, has not been well studied. In this paper, we present a novel algorithm that determines the protein loop conformations using a minimal amount of RDC data. Our algorithm exploits the interplay between the sphero-conics derived from RDCs and the protein kinematics, and formulates the loop structure determination problem as a system of low-degree polynomial equations that can be solved exactly and in closed form. The roots of these polynomial equations, which encode the candidate conformations, are searched systematically, using efficient and provable pruning strategies that triage the vast majority of conformations, to enumerate or prune all possible loop conformations consistent with the data. Our algorithm guarantees completeness by ensuring that a possible loop conformation consistent with the data is never missed. This data-driven algorithm provides a way to assess the structural quality from experimental data with minimal modeling assumptions. We applied our algorithm to compute the loops of human ubiquitin, the FF Domain 2 of human transcription elongation factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the third IgG-binding domain of Protein G (GB3) from experimental RDC data. A comparison of our results versus those obtained by using traditional structure determination protocols on the same data shows that our algorithm is able to achieve higher accuracy: a 3- to 6-fold improvement in backbone RMSD. In addition, computational experiments on synthetic RDC data for a set of protein loops of length 4, 8 and 12 used in previous studies show that, whenever sparse RDCs can be measured, our algorithm can compute longer loops with high accuracy. These results demonstrate that our algorithm can be successfully applied to compute loops with high accuracy from a limited amount of NMR data. Our algorithm will be useful to determine high-quality complete protein backbone conformations, which will benefit the nuclear Overhauser effect (NOE) assignment process in high-resolution protein structure determination.
This work is supported by the following grants from National Institutes of Health: R01 GM-65982 to B.R.D. and R01 GM-079376 to P.Z.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrec, M., et al.: J. Biomol. NMR 21, 335–347 (2004)
Baker, D., Sali, A.: Science 294, 93–96 (2001)
Berman, H.M., et al.: Nucleic Acids Res. 28(1), 235–242 (2000)
Bouvignies, G., et al.: Angewandte Chemie 118, 8346–8349 (2006)
Bruccoleri, R.E., Karplus, M.: Macromolecules 29, 1847–1862 (1990)
Brünger, A.T.: Yale University Press, New Haven (1992)
Buchbinder, J.L., Fletterick, R.J.: J. Biol. Chem. 271(37), 22305–22309 (1996)
Canutescu, A.A., Dunbrack Jr., R.L.: Protein Sci. 12(5), 963–972 (2003)
Casey, J.: Proceedings of the Royal Society of London XIX, 495–497 (1871)
Chen, C.-Y., et al.: Proc. Natl. Acad. Sci. USA 106(10), 3764–3769 (2009)
Chirikjian, G.S.: In: Proceedings of IROS, vol. 2, pp. 1067–1073 (1993)
Clore, G.M., et al.: J. Magn. Reson. 131, 159–162 (1998)
Collura, V., et al.: Protein Sci. 2, 1502–1510 (1993)
Cornilescu, G., et al.: J. Biomol. NMR 13, 289–302 (1999)
Cornilescu, G., et al.: J. Am. Chem. Soc. 120, 6836–6837 (1998)
Cortés, J., et al.: J. Comput. Chem. 25(7), 956–967 (2004)
Coutsias, E.A., et al.: J. Comput. Chem. 25, 510–528 (2004)
Delaglio, F., et al.: J. Am. Chem. Soc. 122, 2142–2143 (2000)
Donald, B.R., Martin, J.: Prog. NMR Spectrosc. 55(2), 101–127 (2009)
Du, P., et al.: Protein Engineering 16(6), 407–414 (2003)
Fine, R.M., et al.: Proteins 1(4), 342–362 (1986)
Fiser, A., et al.: Protein Sci. 9(9), 1753–1773 (2000)
Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)
Georgiev, I., et al.: J. Comput. Chem. 29, 1527–1542 (2008)
Giesen, A.W., et al.: J. Biomol. NMR 25, 63–71 (2003)
Gō, N., Scheraga, H.A.: Macromolecules 3, 178–187 (1970)
Gorczynski, M.J., et al.: Chemistry & Biology 14(10), 1186–1197 (2007)
Güntert, P.: Prog NMR Spectrosc. 43, 105–125 (2003)
Hu, X., et al.: Proc. Natl. Acad. Sci. USA 104(45), 17668–17673 (2007)
Koehl, P., Delarue, M.: Nat. Struct. Biol. 2, 163–170 (1995)
Kolodny, R., et al.: Int. J. Robot Res. 24, 151–163 (2005)
Kuszewski, J., et al.: J. Am. Chem. Soc. 126(20), 6258–6273 (2004)
Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 209–217 (2003)
Langmead, C.J., Donald, B.R. In: Proceedings of CSB, pp. 278–289 (2004)
Lilien, R.H., et al.: J. Comput. Biol. 12(6), 740–761 (2005)
Liu, P., et al.: PLoS Comput. Biol. 5(8), e1000478 (2009)
Losonczi, J.A., et al.: J. Magn. Reson. 138, 334–342 (1999)
Lovell, S.C., et al.: Proteins 50, 437–450 (2003)
Manocha, D., Canny, J.F.: IEEE T. Robotic Autom. 10, 648–657 (1994)
Milgram, R.J., et al.: J. Comput. Chem. 29(1), 50–68 (2008)
Mumenthaler, C., et al.: J. Biomol. NMR 10(4), 351–362 (1997)
Pesce, S., Benezara, R.: Mol. Cell. Biol. 13(12), 7874–7880 (1993)
Prestegard, J.H., et al.: Chemical Reviews 104, 3519–3540 (2004)
Ramirez, B.E., Bax, A.: J. Am. Chem. Soc. 120, 9106–9107 (1998)
Ramirez, B.E., et al.: Protein Sci. 9, 2161–2169 (2000)
Rohl, C.A., Baker, D.: J. Am. Chem. Soc. 124, 2723–2729 (2002)
Salmon, G.: Longmans, Green and Company, London (1912)
Salmon, L., et al.: Angew Chem. Int. Edit. 48(23), 4154–4157 (2009)
Saupe, A.: Angewandte Chemie 7(2), 97–112 (1968)
Saxe, J.B.: In: Proc. 17th Allerton Conf. Comm., Ctrl. Comput., pp. 480–489 (1979)
Schwieters, C.D., et al.: J. Magn. Reson. 160, 65–73 (2003)
Shehu, A., et al.: Proteins 65(1), 164–179 (2006)
Shen, Y., et al.: J. Biomol. NMR 44, 213–223 (2009)
Shenkin, P.S., et al.: Biopolymers 26(12), 2053–2085 (1987)
Shi, L., Javitch, J.A.: Proc. Natl. Acad. Sci. USA 101(2), 440–445 (2004)
Tian, F., et al.: J. Am. Chem. Soc. 123, 11791–11796 (2001)
Tjandra, N., Bax, A.: Science 278, 1111–1114 (1997)
Tolman, J.R., et al.: Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995)
Tolman, J.R., et al.: Nat. Struct. Biol. 4(4), 292–297 (1997)
Tosatto, S.C.E., et al.: Protein Engineering 15(4), 279–286 (2002)
Tripathy, C., Zeng, J., Zhou, P., Donald, B.R.: Supporting Information (2011), http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/pool/
Ulmer, T.S., et al.: J. Am. Chem. Soc. 125, 9179–9191 (2003)
Ulrich, E.L., et al.: Nucleic Acids Res. 36(Database issue), D402–D408 (2008)
van Vlijmen, H.W.T., Karplus, M.: J. Mol. Biol. 267, 975–1001 (1997)
Wang, C., et al.: J. Mol. Biol. 373(2), 503–519 (2007)
Wang, L., Donald, B.R.: J. Biomol. NMR 29(3), 223–242 (2004)
Wang, L., Donald, B.R.: In: Proceedings of CSB, pp. 189–202 (2005)
Wang, L., et al.: J. Comput. Biol. 13(7), 1276–1288 (2006)
Wedemeyer, W.J., Scheraga, H.A.: J. Comput. Chem. 20(8), 819–844 (1999)
Word, J.M., et al.: J. Mol. Biol. 285, 1711–1733 (1999)
Yershova, A., et al.: In: Proceedings of WAFR, vol. 68, pp. 355–372 (2010)
Zeng, J., et al.: J. Biomol. NMR 45(3), 265–281 (2009)
Zeng, J., et al.: In: Proceedings of CSB, pp. 169–181 (2008) ISBN 1752–7791
Zeng, J., et al.: A markov random field framework for protein side-chain resonance assignment. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 550–570. Springer, Heidelberg (2010)
Zweckstetter, M.: Nat. Protoc. 3, 679–690 (2008)
Zweckstetter, M., Bax, A.: J. Am. Chem. Soc. 122(15), 3791–3792 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tripathy, C., Zeng, J., Zhou, P., Donald, B.R. (2011). Protein Loop Closure Using Orientational Restraints from NMR Data. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-20036-6_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20035-9
Online ISBN: 978-3-642-20036-6
eBook Packages: Computer ScienceComputer Science (R0)