Abstract
A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, C., Kamakaka, R.: Chromatin assembly: biochemical identities and genetic redundancy. Current Opinion in Genetics and Development 9, 185–190 (1999)
Bandyopadhyay, S., Kelley, R., Krogan, N.: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Computational Biology (January 2008)
Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with FuncAssociate. Bioinformatics 19(18), 2502–2504 (2003)
Boone, C., Bussey, H., Andrews, B.J.: Exploring genetic interactions and networks with yeast. Nature Reviews Genetics 8, 437–449 (2007)
Brady, A., Maxwell, K., Daniels, N., Cowen, L.: Fault tolerance in protein interaction networks: Stable bipartite subgraphs and redundant pathways. PLoS ONE 4(4), e5364 (2009)
Callebaut, I., Mornon, J.-P.: From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair. FEBS Letters 400, 25–30 (1997)
Carr, A.: DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair 1, 983–994 (2002)
Collins, S., Miller, K., Maas, N., Roguev, A.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature (January 2007)
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L.Y., Toufighi, K., Mostafavi, S., Prinz, J., Onge, R.P.S., VanderSluis, B., Makhnevych, T., Vizeacoumar, F.J., Alizadeh, S., Bahr, S., Brost, R.L., Chen, Y., Cokol, M., Deshpande, R., Li, Z., Lin, Z., Liang, W., Marback, M., Paw, J., Luis, B.S., Shuteriqi, E., Tong, A.H.Y., van Dyk, N., Wallace, I.M., Whitney, J.A., Weirauch, M.T., Zhong, G., Zhu, H., Houry, W.A., Brudno, M., Ragibizadeh, S., Papp, B., Pál, C., Roth, F.P., Giaever, G., Nislow, C., Troyanskaya, O.G., Bussey, H., Bader, G.D., Gingras, A., Morris, Q.D., Kim, P.M., Kaiser, C.A., Myers, C.L., Andrews, B.J., Boone, C.: The genetic landscape of a cell. Science 327(5964), 425–431 (2010)
D’Amours, D., Jackson, S.: The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Reviews Molecular Cell Biology 3, 317–327 (2002)
Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G.: Functional organization of the S. cerevisiae phosphorylation network. Cell (January 2009)
Green, E., Antcsak, A., Bailey, A., Franco, A., Wu, K., Yates, J., Kaufman, P.: Replication-independent histone deposition by the HIR complex and asf1. Current Biology 15, 2044–2049 (2005)
Hescott, B.J., Leiserson, M.D.M., Slonim, D.K., Cowen, L.J.: Evaluating between-pathway models with expression data. Journal of Computational Biology 17(3), 477–487 (2010)
Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44, 223–270 (1908)
Jaimovich, A., Rinott, R., Schuldiner, M., Margalit, H., Friedman, N.: Modularity and directionality in genetic interaction maps. Bioinformatics 26(12), i228–i236 (2010)
Kelley, D., Kingsford, C.: Extracting between-pathway models from E-MAP interactions using expected graph compression. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 248–262. Springer, Heidelberg (2010)
Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005), doi:10.1038/nbt1096 PMID:15877074
Krogan, N., Keogh, M.-C., Datta, N., Sawa, C., Ryan, O., Ding, H., Haw, R., Pootoolal, J., Tong, A., Canadien, V., Richards, D., Wu, X., Emili, A., Hughes, T., Buratowski, S., Greenblatt, J.: A Snf2 family ATPase complex required for the recruitment of the histone H2A variant Htz1. Molecular Cell 12, 1565–1576 (2003)
Loebl, M.: Efficient maximal cubic graph cuts. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 351–362. Springer, Heidelberg (1991)
Ma, X., Tarone, A., Li, W.: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 3(4), e1922 (2008), doi:10.1371/journal.pone.0001922 PMCID: PMC2275788
Pan, X., Ye, P., Tuan, D., Wang, X., Bader, J., Boeke, J.: A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006)
Poljak, S.: Integer linear programs and local search for max-cut. SIAM J. Comput. 24(4), 822–839 (1995)
Real, R., Vargas, J.: The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 45(3), 380–385 (1996)
Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H., Hayles, J., Hoe, K., Kim, D., Ideker, T., Grewal, S.I., Weissman, J.S., Krogan, N.J.: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322(5900), 405–410 (2008)
Schäffer, A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20, 56–87 (1991)
Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., Weissman, J.S., Krogan, N.J.: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3), 507–519 (2005)
Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34(suppl 1), D535–D539 (2005)
Taipale, M., Jarosz, D., Lindquist, S.: HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology 11, 515–528 (2010)
Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D.S., Haynes, J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J.N., Lu, H., Menard, P., Munyana, C., Parsons, A.B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.-M., Shapiro, J., Sheikh, B., Suter, B., Wong, S.L., Zhang, L.V., Zhu, H., Burd, C.G., Munro, S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F.P., Brown, G.W., Andrews, B., Bussey, H., Boone, C.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)
Ulitsky, I., Krogan, N., Shamir, R.: Towards accurate imputation of quantitative genetic interactions. Genome Biology (January 2009)
Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the S. cerevisiae interaction networks. Molecular Systems Biology 3(104) (2007), PMCID: PMC1865586
Ulitsky, I., Shlomi, T., Kupiec, M., Shamir, R.: From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Molecular Systems Biology (January 2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leiserson, M.D.M., Tatar, D., Cowen, L.J., Hescott, B.J. (2011). Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-20036-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20035-9
Online ISBN: 978-3-642-20036-6
eBook Packages: Computer ScienceComputer Science (R0)