Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimization–Based Modeling with Applications to Transport: Part 1. Abstract Formulation

  • Conference paper
Large-Scale Scientific Computing (LSSC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7116))

Included in the following conference series:

Abstract

This paper is the first of three related articles, which develop and demonstrate a new, optimization–based framework for computational modeling. The framework uses optimization and control ideas to assemble and decompose multiphysics operators and to preserve their fundamental physical properties in the discretization process. An optimization–based monotone, linearity preserving algorithm for transport (OBT) demonstrates the scope of the framework. The second and the third parts of this work focus on the formulation of efficient optimization algorithms for the solution of the OBT problem, and computational studies of its accuracy and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, M., Murman, S.M., Aftosmis, M.J.: Analysis of slope limiters on irregular grids. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting. No. AIAA2005-0490, AIAA, Reno, NV, January 10-13 (2005)

    Google Scholar 

  2. Bochev, P., Ridzal, D.: Additive Operator Decomposition and Optimization–Based Reconnection with Applications. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 645–652. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bochev, P., Ridzal, D.: An optimization-based approach for the design of PDE solution algorithms. SIAM Journal on Numerical Analysis 47(5), 3938–3955 (2009), http://link.aip.org/link/?SNA/47/3938/1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary lagrangian-eulerian methods. Journal of Computational Physics 230(13), 5199–5225 (2011), http://www.sciencedirect.com/science/article/B6WHY-52F895B-2/2/5e30ada70a5c6053464dfe9ceb74cf26

    Article  MathSciNet  MATH  Google Scholar 

  5. Dukowicz, J.K., Baumgardner, J.R.: Incremental remapping as a transport/advection algorithm. Journal of Computational Physics 160(1), 318–335 (2000), http://www.sciencedirect.com/science/article/B6WHY-45FC8N8-6F/2/179cbfc9634bb79579b68754cebd5525

    Article  MATH  Google Scholar 

  6. Kucharik, M., Shashkov, M., Wendroff, B.: An efficient linearity-and-bound-preserving remapping method. Journal of Computational Physics 188(2), 462–471 (2003), http://www.sciencedirect.com/science/article/B6WHY-48CWYJW-2/2/d264d65dcfa253e387aea5bdebfd433f

    Article  MATH  Google Scholar 

  7. Margolin, L.G., Shashkov, M.: Second-order sign-preserving conservative interpolation (remapping) on general grids. Journal of Computational Physics 184(1), 266–298 (2003), http://www.sciencedirect.com/science/article/B6WHY-47HS5PX-4/2/9acf255c80d91bf5873398d5b929303e

    Article  MathSciNet  MATH  Google Scholar 

  8. Ridzal, D., Bochev, P., Young, J., Peterson, K.: Optimization–Based Modeling with Applications to Transport. Part 3. Implementation and Computational Studies. In: Lirkov, I., Margenov, S., Wanśiewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 81–88. Springer, Heidelberg (2012)

    Google Scholar 

  9. Swartz, B.: Good neighborhoods for multidimensional Van Leer limiting. Journal of Computational Physics 154(1), 237–241 (1999), http://www.sciencedirect.com/science/article/B6WHY-45GMW6B-25/2/5ba96d929cffd2519d4a04719509a5e7

    Article  MathSciNet  MATH  Google Scholar 

  10. Young, J., Ridzal, D., Bochev, P.: Optimization–Based Modeling with Applications to Transport. Part 2. Optimization Algorithm. In: Lirkov, I., Margenov, S., Wanśiewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 72–80. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bochev, P., Ridzal, D., Young, J. (2012). Optimization–Based Modeling with Applications to Transport: Part 1. Abstract Formulation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29843-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29842-4

  • Online ISBN: 978-3-642-29843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics