Abstract
This paper is the first of three related articles, which develop and demonstrate a new, optimization–based framework for computational modeling. The framework uses optimization and control ideas to assemble and decompose multiphysics operators and to preserve their fundamental physical properties in the discretization process. An optimization–based monotone, linearity preserving algorithm for transport (OBT) demonstrates the scope of the framework. The second and the third parts of this work focus on the formulation of efficient optimization algorithms for the solution of the OBT problem, and computational studies of its accuracy and efficacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, M., Murman, S.M., Aftosmis, M.J.: Analysis of slope limiters on irregular grids. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting. No. AIAA2005-0490, AIAA, Reno, NV, January 10-13 (2005)
Bochev, P., Ridzal, D.: Additive Operator Decomposition and Optimization–Based Reconnection with Applications. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 645–652. Springer, Heidelberg (2010)
Bochev, P., Ridzal, D.: An optimization-based approach for the design of PDE solution algorithms. SIAM Journal on Numerical Analysis 47(5), 3938–3955 (2009), http://link.aip.org/link/?SNA/47/3938/1
Bochev, P., Ridzal, D., Scovazzi, G., Shashkov, M.: Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary lagrangian-eulerian methods. Journal of Computational Physics 230(13), 5199–5225 (2011), http://www.sciencedirect.com/science/article/B6WHY-52F895B-2/2/5e30ada70a5c6053464dfe9ceb74cf26
Dukowicz, J.K., Baumgardner, J.R.: Incremental remapping as a transport/advection algorithm. Journal of Computational Physics 160(1), 318–335 (2000), http://www.sciencedirect.com/science/article/B6WHY-45FC8N8-6F/2/179cbfc9634bb79579b68754cebd5525
Kucharik, M., Shashkov, M., Wendroff, B.: An efficient linearity-and-bound-preserving remapping method. Journal of Computational Physics 188(2), 462–471 (2003), http://www.sciencedirect.com/science/article/B6WHY-48CWYJW-2/2/d264d65dcfa253e387aea5bdebfd433f
Margolin, L.G., Shashkov, M.: Second-order sign-preserving conservative interpolation (remapping) on general grids. Journal of Computational Physics 184(1), 266–298 (2003), http://www.sciencedirect.com/science/article/B6WHY-47HS5PX-4/2/9acf255c80d91bf5873398d5b929303e
Ridzal, D., Bochev, P., Young, J., Peterson, K.: Optimization–Based Modeling with Applications to Transport. Part 3. Implementation and Computational Studies. In: Lirkov, I., Margenov, S., Wanśiewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 81–88. Springer, Heidelberg (2012)
Swartz, B.: Good neighborhoods for multidimensional Van Leer limiting. Journal of Computational Physics 154(1), 237–241 (1999), http://www.sciencedirect.com/science/article/B6WHY-45GMW6B-25/2/5ba96d929cffd2519d4a04719509a5e7
Young, J., Ridzal, D., Bochev, P.: Optimization–Based Modeling with Applications to Transport. Part 2. Optimization Algorithm. In: Lirkov, I., Margenov, S., Wanśiewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 72–80. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bochev, P., Ridzal, D., Young, J. (2012). Optimization–Based Modeling with Applications to Transport: Part 1. Abstract Formulation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-29843-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29842-4
Online ISBN: 978-3-642-29843-1
eBook Packages: Computer ScienceComputer Science (R0)