Abstract
A wireless Body Sensor Node (BSN) and its operations are presented. The BSN comprises all the necessary components (i.e., antenna, electronics, batteries and bio-sensor) to allow continuous monitoring of physiological data. In vitro characterization validates the simulated performances, while in vivo experiment shows the capability of the system for real life telemedicine applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gonzalez-Guillaumin, J.L., Sadowski, D.C., Kaler, K.V.I.S., Mintchev, M.P.: Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans. Biomed. Eng. 54(12), 2231–2236 (2007)
Pill cam, Given Imaging, http://www.givenimaging.com/en-us/Pages/GivenWelcomePage.aspx
Johannessen, E.A., Wang, L., Wyse, C., Cumming, D.R.S., Cooper, J.M.: Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments. IEEE Trans. Biomed. Eng. 53(11), 2333–2340 (2006)
Chow, E.Y., Chlebowski, A.L., Chakraborty, S., Chappell, W.J., Irazoqui, P.P.: Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)
Medical Device Radiocommunications Service (MedRadio), Federal Communication Commission (FCC) Std. CFR, Part 95.601-673 Subpart E, Part 95.1201-1221 Subpart I, formerly. Medical Implanted Communication System (MICS) (2009), http://wireless.fcc.gov/services/index.htm?job=service_home&id=medical_implant
Kuenzi, S., Meurville, E., Ryser, P.: Automated characterization of dextran/ concanavalin a mixtures–a study of sensitivity and temperature dependence at low viscosity as basis for an implantable glucose sensor. Sensors and Actuators B: Chemical 146(1), 1–7 (2010)
Merli, F., Bolomey, L., Meurville, E., Skrivervik, A.K.: Dual band antenna for subcutaneous telemetry applications. In: Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), pp. 1–4 (2010)
Merli, F., Bolomey, L., Zürcher, J.-F., Corradini, G., Meurville, E., Skrivervik, A.K.: Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Trans. Antennas Propag. 59(10), 3544–3555 (2011)
Johannessen, E.A., Wang, L., Cui, L., Tang, T.B., Ahmadian, M., Astaras, A., Reid, S.W.J., Yam, P.S., Murray, A.F., Flynn, B.W., Beaumont, S.P., Cumming, D.R.S., Cooper, J.M.: Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Trans. Biomed. Eng. 51(3), 525–535 (2004)
Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32), 4845–4869 (2007)
Merli, F., Fuchs, B., Mosig, J.R., Skrivervik, A.K.: The effect of insulating layers on the performance of implanted antennas. IEEE Trans. Antennas Propag. 59(1), 21–31 (2011)
Bolomey, L., Meurville, E., Ryser, P.: Implantable ultra-low power DSP-based system for a miniature chemico-rheological biosensor. In: Proceedings of the Eurosensors XXIII Conference, vol. (1), pp. 1235–1238 (2009)
Bradley, P.D.: Implantable ultralow-power radio chip facilitates in-body communications. RF Design (online magazine) (2007), http://rfdesign.com/next_generation_wireless/short_range_wireless/706RFDF1.pdf
De Micheli, G., Ghoreishizadeh, S., Boero, C., Valgimigli, F., Carrara, S.: An integrated platform for advanced diagnostics. In: Proc. Design, Automation and Test in Europe (DATE 2011), pp. 2995–2999 (2011)
Valdastri, P., Susilo, E., Forster, T., Strohhofer, C., Menciassi, A., Dario, P.: Wireless implantable electronic platform for chronic fluorescent-based biosensors. IEEE Trans. Biomed. Eng. 58(6), 1846–1854 (2011)
Audet, S., Herrmann, E.J., Receveur, R., et al.: Medical applications. Comprehensive Microsystems, 421–474 (2008)
Valdastri, P., Susilo, E., Förster, T., Strohhöfer, C., Menciassi, A., Dario, P.: Wireless implantable electronic platform for blood glucose level monitoring. In: Proceedings of the Eurosensors XXIII Conference, vol. (1), pp. 1255–1258 (2009)
Valdastri, P., Menciassi, A., Arena, A., Caccamo, C., Dario, P.: An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. Inf. Technol. Biomed. 8(3), 271–278 (2004)
Cheney, C.P., Srijanto, B., Hedden, D.L., Gehl, A., Ferrell, T.L., Schultz, J., Engleman, E.A., McBride, W.J., O’Connor, S.: In vivo wireless ethanol vapor detection in the wistar rat. Sens. Actuators B Chem. 138(1), 264–269 (2009)
DSI PhysioTel PA-C10 for Mice, data sciences international (2005)
Brouard, Barrandon: Private Communication
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Merli, F., Bolomey, L., Gorostidi, F., Barrandon, Y., Meurville, E., Skrivervik, A.K. (2012). In Vitro and In Vivo Operation of a Wireless Body Sensor Node. In: Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, MT. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29734-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-29734-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29733-5
Online ISBN: 978-3-642-29734-2
eBook Packages: Computer ScienceComputer Science (R0)