Nothing Special   »   [go: up one dir, main page]

Skip to main content

In Vitro and In Vivo Operation of a Wireless Body Sensor Node

  • Conference paper
Wireless Mobile Communication and Healthcare (MobiHealth 2011)

Abstract

A wireless Body Sensor Node (BSN) and its operations are presented. The BSN comprises all the necessary components (i.e., antenna, electronics, batteries and bio-sensor) to allow continuous monitoring of physiological data. In vitro characterization validates the simulated performances, while in vivo experiment shows the capability of the system for real life telemedicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gonzalez-Guillaumin, J.L., Sadowski, D.C., Kaler, K.V.I.S., Mintchev, M.P.: Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans. Biomed. Eng. 54(12), 2231–2236 (2007)

    Article  Google Scholar 

  2. Pill cam, Given Imaging, http://www.givenimaging.com/en-us/Pages/GivenWelcomePage.aspx

  3. Johannessen, E.A., Wang, L., Wyse, C., Cumming, D.R.S., Cooper, J.M.: Biocompatibility of a lab-on-a-pill sensor in artificial gastrointestinal environments. IEEE Trans. Biomed. Eng. 53(11), 2333–2340 (2006)

    Article  Google Scholar 

  4. Chow, E.Y., Chlebowski, A.L., Chakraborty, S., Chappell, W.J., Irazoqui, P.P.: Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)

    Article  Google Scholar 

  5. Medical Device Radiocommunications Service (MedRadio), Federal Communication Commission (FCC) Std. CFR, Part 95.601-673 Subpart E, Part 95.1201-1221 Subpart I, formerly. Medical Implanted Communication System (MICS) (2009), http://wireless.fcc.gov/services/index.htm?job=service_home&id=medical_implant

  6. Kuenzi, S., Meurville, E., Ryser, P.: Automated characterization of dextran/ concanavalin a mixtures–a study of sensitivity and temperature dependence at low viscosity as basis for an implantable glucose sensor. Sensors and Actuators B: Chemical 146(1), 1–7 (2010)

    Article  Google Scholar 

  7. Merli, F., Bolomey, L., Meurville, E., Skrivervik, A.K.: Dual band antenna for subcutaneous telemetry applications. In: Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), pp. 1–4 (2010)

    Google Scholar 

  8. Merli, F., Bolomey, L., Zürcher, J.-F., Corradini, G., Meurville, E., Skrivervik, A.K.: Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Trans. Antennas Propag. 59(10), 3544–3555 (2011)

    Article  Google Scholar 

  9. Johannessen, E.A., Wang, L., Cui, L., Tang, T.B., Ahmadian, M., Astaras, A., Reid, S.W.J., Yam, P.S., Murray, A.F., Flynn, B.W., Beaumont, S.P., Cumming, D.R.S., Cooper, J.M.: Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Trans. Biomed. Eng. 51(3), 525–535 (2004)

    Article  Google Scholar 

  10. Kurtz, S.M., Devine, J.N.: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32), 4845–4869 (2007)

    Article  Google Scholar 

  11. Merli, F., Fuchs, B., Mosig, J.R., Skrivervik, A.K.: The effect of insulating layers on the performance of implanted antennas. IEEE Trans. Antennas Propag. 59(1), 21–31 (2011)

    Article  Google Scholar 

  12. Bolomey, L., Meurville, E., Ryser, P.: Implantable ultra-low power DSP-based system for a miniature chemico-rheological biosensor. In: Proceedings of the Eurosensors XXIII Conference, vol. (1), pp. 1235–1238 (2009)

    Google Scholar 

  13. Bradley, P.D.: Implantable ultralow-power radio chip facilitates in-body communications. RF Design (online magazine) (2007), http://rfdesign.com/next_generation_wireless/short_range_wireless/706RFDF1.pdf

  14. De Micheli, G., Ghoreishizadeh, S., Boero, C., Valgimigli, F., Carrara, S.: An integrated platform for advanced diagnostics. In: Proc. Design, Automation and Test in Europe (DATE 2011), pp. 2995–2999 (2011)

    Google Scholar 

  15. Valdastri, P., Susilo, E., Forster, T., Strohhofer, C., Menciassi, A., Dario, P.: Wireless implantable electronic platform for chronic fluorescent-based biosensors. IEEE Trans. Biomed. Eng. 58(6), 1846–1854 (2011)

    Article  Google Scholar 

  16. Audet, S., Herrmann, E.J., Receveur, R., et al.: Medical applications. Comprehensive Microsystems, 421–474 (2008)

    Google Scholar 

  17. Valdastri, P., Susilo, E., Förster, T., Strohhöfer, C., Menciassi, A., Dario, P.: Wireless implantable electronic platform for blood glucose level monitoring. In: Proceedings of the Eurosensors XXIII Conference, vol. (1), pp. 1255–1258 (2009)

    Google Scholar 

  18. Valdastri, P., Menciassi, A., Arena, A., Caccamo, C., Dario, P.: An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. Inf. Technol. Biomed. 8(3), 271–278 (2004)

    Article  Google Scholar 

  19. Cheney, C.P., Srijanto, B., Hedden, D.L., Gehl, A., Ferrell, T.L., Schultz, J., Engleman, E.A., McBride, W.J., O’Connor, S.: In vivo wireless ethanol vapor detection in the wistar rat. Sens. Actuators B Chem. 138(1), 264–269 (2009)

    Article  Google Scholar 

  20. DSI PhysioTel PA-C10 for Mice, data sciences international (2005)

    Google Scholar 

  21. Brouard, Barrandon: Private Communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Merli, F., Bolomey, L., Gorostidi, F., Barrandon, Y., Meurville, E., Skrivervik, A.K. (2012). In Vitro and In Vivo Operation of a Wireless Body Sensor Node. In: Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, MT. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29734-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29734-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29733-5

  • Online ISBN: 978-3-642-29734-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics