Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Distributed-Parameter Approach to Model Galvanic and Capacitive Coupling for Intra-body Communications

  • Conference paper
Wireless Mobile Communication and Healthcare (MobiHealth 2011)

Abstract

In this paper, we propose a simple, but accurate propagation model through the skin based on a RGC distributed-parameter circuit that leads to the obtaining of simple and general attenuation expressions for both galvanic and capacitive coupling methods that could assist in the design of Intra-body Communications (IBC) systems. The objective of this model is to study the influence of the skin impedance in the propagation characteristics of a particular signal. In order to depict that skin impedance, the model is based on the major electro-physiological properties of the skin, which also allows a personalized model. Simulation results have been successfully compared with several published results, thus showing the tuning capability of the model to different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zimmerman, T.G.: Personal area networks. Ph.D. thesis, Massachusetts Inst. Technol., Cambridge (1995)

    Google Scholar 

  2. Baldus, H., Corroy, S., Fazzi, A., Klabunde, K., Schenk, T.: Human-centric connectivity enabled by body-coupled communications. IEEE Commun. Mag. 47, 172–178 (2009)

    Article  Google Scholar 

  3. Maglaveras, N., Bonato, P., Tamura, T.: Guest Editorial Special Section on Personal Health Systems. IEEE Trans. Inf. Technol. Biomed. 14, 360–363 (2010)

    Article  Google Scholar 

  4. Cho, N., Yan, L., Bae, J., Yoo, H.-J.: A 60 kb/s-10 Mb/s Adaptive Frequency Hopping Transceiver for Interference-Resilient Body Channel Communication. IEEE J. Solid-State Circuits 44, 708–717 (2009)

    Article  Google Scholar 

  5. Sasaki, A.-I., Shinagawa, M., Ochiai, K.: Principles and Demonstration of Intrabody Communication With a Sensitive Electrooptic Sensor. IEEE Trans. Instrum. Meas. 58, 457–466 (2009)

    Article  Google Scholar 

  6. Xu, R., Hongjie Zhu, H., Yuan, J.: Electric-Field Intrabody Communication Channel Modeling With Finite-Element Method. IEEE Trans. Biomed. Eng. 58, 705–712 (2011)

    Article  Google Scholar 

  7. Wegmueller, M.S., Oberle, M., Felber, N., Kuster, N., Fichtner, W.: Signal Transmission by Galvanic Coupling Through the Human Body. IEEE Trans. Instrum. Meas. 59, 963–969 (2010)

    Article  Google Scholar 

  8. Pun, S.H., Gao, Y.M., Mou, P.A., Mak, P.U., Vai, M.I., Du, M.: Multilayer limb quasi-static electromagnetic modeling with experiments for Galvanic coupling type IBC. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 378–381 (2010)

    Google Scholar 

  9. Song, Y., Qun Hao, Q., Zhang, K., Wang, M., Chu, Y., Kang, B.: The Simulation Method of the Galvanic Coupling Intrabody Communication With Different Signal Transmission Paths. IEEE Trans. Instrum. Meas. 60, 1257–1266 (2011)

    Article  Google Scholar 

  10. Cho, N., Yoo, J., Song, S.-J., Lee, J., Jeon, S., Yoo, H.-J.: The Human Body Characteristics as a Signal Transmission Medium for Intrabody Communication. IEEE Trans. Microw. Theory Tech. 55, 1080–1086 (2007)

    Article  Google Scholar 

  11. Wegmueller, M.S., Oberle, N., Kuster, N., Fichtner, W.: From Dielectrical Properties of Human Tissue to Intra-Body Communications. In: 2006 IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 14, pp. 613–617 (2007)

    Google Scholar 

  12. Callejón, M.A., Roa, L.M., Reina, J., Naranjo, D.: Study of attenuation and dispersion through the skin in Intrabody Communication Systems. Submitted to IEEE Trans. Inf. Technol. Biomed. (April 2011) (under review)

    Google Scholar 

  13. Callejon, M.A., Castano, M.M., Roa, L.M., Reina, J.: Proposal of propagation model through skin for attenuation study in Intrabody Communication Systems. In: 27th Annual Conference Spanish Biomedical Engineering Society, CASEIB (2009) (in Spanish)

    Google Scholar 

  14. Tronstad, C., Johnsen, G.K., Grimnes, S., Martinsen, Ø.G.: A study on electrode gels for skin conductance measurements. Physiol. Meas. 31, 1395 (2010)

    Article  Google Scholar 

  15. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology 41, 2271 (1996)

    Article  Google Scholar 

  16. Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., Itao, K.: Intra-body data transmission for the personal area network. Microsystem Technologies 11, 1020–1027 (2005)

    Article  Google Scholar 

  17. Wegmueller, M.S., Huclova, S., Froehlich, J., Oberle, M., Felber, N., Kuster, N., Fichtner, W.: Galvanic Coupling Enabling Wireless Implant Communications. IEEE Trans. Instrum. Meas. 58, 2618–2625 (2009)

    Article  Google Scholar 

  18. Ruiz, J.A., Shimamoto, S.: Experimental Evaluation of Body Channel Response and Digital Modulation Schemes for Intra-body Communications. In: IEEE International Conference on Communications, ICC 2006, vol. 1, pp. 349–354 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Callejón, M.A., Reina-Tosina, J., Roa, L.M., Naranjo, D. (2012). A Distributed-Parameter Approach to Model Galvanic and Capacitive Coupling for Intra-body Communications. In: Nikita, K.S., Lin, J.C., Fotiadis, D.I., Arredondo Waldmeyer, MT. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2011. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29734-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29734-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29733-5

  • Online ISBN: 978-3-642-29734-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics