Abstract
Simulators have been used for many years to learn driving, piloting, steering, etc. but they often provide the same training for each learner, no matter his/her performance. In this paper, we present the GULLIVER system, which determines the most appropriate aids to display for learner guiding in a fluvial-navigation training simulator. GULLIVER is a decision-making system based on an evidential network with conditional belief functions. This evidential network allows graphically representing inference rules on uncertain data coming from learner observation. Several sensors and a predictive model are used to collect these data about learner performance. Then the evidential network is used to infer in real time the best guiding to display to learner in informed virtual environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amokrane, K., Lourdeaux, D., Burkhardt, J.M.: HERA: Learner Tracking in a Virtual Environment. International Journal of Virtual Reality 7(3), 23–30 (2008)
Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. International Journal of Approximate Reasoning 48(2), 399–418 (2008)
Buche, C., Bossard, C., Querrec, R., Chevaillier, P.: PEGASE: A Generic and Adaptable Intelligent System for Virtual Reality Learning Environments. International Journal of Virtual Reality 9(2), 73–85 (2010)
Flipo, A.: TRUST: the Truck Simulator for Training. In: Driving Simulation Conference, Paris, France, 208–220 (2000)
Mercier, D., Quost, B., Denoeux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion 9(2), 246–258 (2008)
Mufti-Alchawafa, D.: Modélisation et représentation de la connaissance pour la conception d’un systéme décisionnel dans un environnement informatique d’apprentissage en chirurgie. PhD thesis, Université Joseph Fourier - Grenoble I (2008)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Ramasso, E., Rombaut, M., Pellerin, D.: Modéle des Croyances Transférables: Représentation des connaissances, Fusion d’informations, Décision. Technical report (2007)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
Shenoy, P.P.: Using Dempster-Shafer’s belief-function theory in expert systems. In: Advances in the Dempster-Shafer theory of evidence, pp. 395–414. John Wiley & Sons (1994)
Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9(1), 1–35 (1993)
Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2) (1994)
Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2005)
Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8(4), 387–412 (2007)
Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In: Uncertainty in Artificial Intelligence, San Francisco, CA, pp. 598–605 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fricoteaux, L., Thouvenin, I., Olive, J., George, P. (2012). Evidential Network with Conditional Belief Functions for an Adaptive Training in Informed Virtual Environment. In: Denoeux, T., Masson, MH. (eds) Belief Functions: Theory and Applications. Advances in Intelligent and Soft Computing, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29461-7_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-29461-7_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29460-0
Online ISBN: 978-3-642-29461-7
eBook Packages: EngineeringEngineering (R0)