Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evidential Network with Conditional Belief Functions for an Adaptive Training in Informed Virtual Environment

  • Conference paper
Belief Functions: Theory and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 164))

Abstract

Simulators have been used for many years to learn driving, piloting, steering, etc. but they often provide the same training for each learner, no matter his/her performance. In this paper, we present the GULLIVER system, which determines the most appropriate aids to display for learner guiding in a fluvial-navigation training simulator. GULLIVER is a decision-making system based on an evidential network with conditional belief functions. This evidential network allows graphically representing inference rules on uncertain data coming from learner observation. Several sensors and a predictive model are used to collect these data about learner performance. Then the evidential network is used to infer in real time the best guiding to display to learner in informed virtual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amokrane, K., Lourdeaux, D., Burkhardt, J.M.: HERA: Learner Tracking in a Virtual Environment. International Journal of Virtual Reality 7(3), 23–30 (2008)

    Google Scholar 

  2. Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. International Journal of Approximate Reasoning 48(2), 399–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buche, C., Bossard, C., Querrec, R., Chevaillier, P.: PEGASE: A Generic and Adaptable Intelligent System for Virtual Reality Learning Environments. International Journal of Virtual Reality 9(2), 73–85 (2010)

    Google Scholar 

  4. Flipo, A.: TRUST: the Truck Simulator for Training. In: Driving Simulation Conference, Paris, France, 208–220 (2000)

    Google Scholar 

  5. Mercier, D., Quost, B., Denoeux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion 9(2), 246–258 (2008)

    Article  Google Scholar 

  6. Mufti-Alchawafa, D.: Modélisation et représentation de la connaissance pour la conception d’un systéme décisionnel dans un environnement informatique d’apprentissage en chirurgie. PhD thesis, Université Joseph Fourier - Grenoble I (2008)

    Google Scholar 

  7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  8. Ramasso, E., Rombaut, M., Pellerin, D.: Modéle des Croyances Transférables: Représentation des connaissances, Fusion d’informations, Décision. Technical report (2007)

    Google Scholar 

  9. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  10. Shenoy, P.P.: Using Dempster-Shafer’s belief-function theory in expert systems. In: Advances in the Dempster-Shafer theory of evidence, pp. 395–414. John Wiley & Sons (1994)

    Google Scholar 

  11. Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9(1), 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2) (1994)

    Google Scholar 

  13. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8(4), 387–412 (2007)

    Article  MathSciNet  Google Scholar 

  15. Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In: Uncertainty in Artificial Intelligence, San Francisco, CA, pp. 598–605 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Fricoteaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fricoteaux, L., Thouvenin, I., Olive, J., George, P. (2012). Evidential Network with Conditional Belief Functions for an Adaptive Training in Informed Virtual Environment. In: Denoeux, T., Masson, MH. (eds) Belief Functions: Theory and Applications. Advances in Intelligent and Soft Computing, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29461-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29461-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29460-0

  • Online ISBN: 978-3-642-29461-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics