Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e., the Tabucol and Hybrid Evolutionary algorithm (HEA), and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Brelaz, D.: New methods to color vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 1, pp. 331–337. Morgan Kaufmann (1991)

    Google Scholar 

  5. Culberson, J.: Graph Coloring Page, http://www.ncbi.nlm.nih.gov

  6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Eiben, A.E., Hauw, K., Hemert, J.I.: Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics 4(1), 25–46 (1998)

    Article  MATH  Google Scholar 

  9. Fister, I., Brest, J.: Using differential evolution for the graph coloring. In: Proceedings of IEEE SSCI 2011 symposium series on computational intelligence, Piscataway, pp. 150–156 (2011)

    Google Scholar 

  10. Fleurent, C., Ferland, J.: Genetic and Hybrid Algorithms for Graph Coloring. Annals of Operations Research 63, 437–464 (1996)

    Article  MATH  Google Scholar 

  11. Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & Operations Research 33, 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  14. Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iacca, G., Neri, F., Mininno, E., Ong, Y.-S., Lim, M.-H.: Ockham’s Razor in Memetic Computing: Three Stage Optimal Memetic Exploration (2011) (in press)

    Google Scholar 

  17. Karaboga, D., Basturk, A.: A survey: algorithms simulating bee swarm intelligence. Artifficial Intelligence Review 31(1-4), 61–85 (2009)

    Article  Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  19. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Transactions in Operational Research, 1–34 (2009)

    Google Scholar 

  21. Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences 181(12), 2455–2468 (2011)

    Article  MathSciNet  Google Scholar 

  22. Petford, A.D., Welsh, D.J.A.: A randomized 3-coloring algorithms. Discrete Mathematic 74(1-2), 253–261 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rao, S.S.: Engineering Optimization: Theory and Practice. John Willey & Sons, New Jersey (2009)

    Google Scholar 

  24. Robinson, J., Rahmat-Samii, Y.: Particle Swarm Optimization in Electro-Magnetics. IEEE on Antennas and Propagation 52(2), 397–407 (2004)

    Article  MathSciNet  Google Scholar 

  25. Tasgetiren, M.F., Pan, Q.K., Suganthan, P.N., Chen, A.H.-L.: A discrete artificial bee colony algorithm for the total flowtime minimization and permutation flow shops. Information Sciences 181(16), 3459–3475 (2011)

    Article  MathSciNet  Google Scholar 

  26. Turner, J.S.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9(1), 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fister, I., Fister, I., Brest, J. (2012). A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics