Abstract
The paper presents a new Fully Controllable Ant Colony Algorithm (FCACA) for the clustering of the text documents in vector space. The proposed new FCACA is a modified version of the Lumer and Faieta Ant Colony Algorithm (LF-ACA). The algorithm introduced new version of the basic heuristic decision function significantly improves the convergence and greater control over the process of the grouping data. The proposed solution was shown in a text example proving efficiency of the proposed solution in comparison with other grouping algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deneubourg, J.L., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior 3(159) (1990)
Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of ECAL 1991: European Conference on Artificial Life, pp. 134–142. Elsevier, Paris (1991)
Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)
Cheng, C.-B., Mao, C.-P.: A modified ant colony system for solving the travelling salesman problem with time windows. Mathematical and Computer Modelling (46), 1225–1235 (2007)
Gambardella, L.M.: Ant-Q: A reinforcement learning approach to the traveling salesman problem. In: International Conference on Machine Learning, pp. 252–260 (1995)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B 26(1), 29–41 (1996)
Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment problem. Microprocessors and Microsystems 26, 363–371 (2002)
Socha, K., Knowles, J., Sampels, M.: A Max-Min ant system for the university course timetabling problem. IRIDIA, Université Libre de Bruxelles, CP 194/6 (2003)
Socha, K.: A Max-Min ant system for international timetabling competition. IRIDIA, Université Libre de Bruxelles, CP 194/6 (March)
Lumer, E., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 3 (1994)
Bin, W., Yi, Z., Shaohui, L., Zhongzhi, S.: CSIM: A document clustering algorithm based on swarm intelligence. In: Evolutionary Computation, CEC 2002, vol. (1), pp. 477–482 (2002)
Salton, G.: The smart retrieval system. Prentice-Hall, Englewood Cliffs (1971)
Salton, G., McG’ill, J.M.: Introduction to modern information retrieval (1983)
Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web, Probabilistic Methods and Algorithms. Wiley (2003)
Robertson, S.E.: The probability ranking principle in IR. Journal of the American Society for Information Science (33), 294–304 (1997)
Robertson, S.E., Maron, M.E., Cooper, W.S.: Probability of relevance: a unification of two competing models for document retrieval. Information Technology: Research and Development (1), 1–21 (1982)
Robertson, S.E.: Understanding inverse document frequency: on theoretical arguments for IDF. Journal of Documentation 60(5), 503–520 (2004)
Robertson, S.E.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1), 11–21 (1972)
Hotho, A., Nurnberger, A., Paab, G.: A brief survey of text mining. LDV Forum - GLDV Journal for Computational Linguistics and Language Technology 20(19-62) (2005)
Cheng, T.W., Goldgof, D.B., Hall, L.O.: Fast fuzzy clustering. Fuzzy Sets and Systems (93), 49–56 (1998)
Yang, M.-S., Tsai, H.-S.: A gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters (29), 1713–1725 (2008)
Cortez, E., Park, S., Kim, S.: The hybrid application of an inductive learning method and a neural network for intelligent information retrieval. Information Processing & Management 31(6), 789–813 (1995)
Lam, W., Ho, C.: Using a generalized instance set for automatic text categorization. In: SIGIR 1998: 21st ACM Int. Conf. on Research and Development in Information Retrieval, pp. 81–89 (1998)
Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys, 1–47 (2002)
Dziwiñski, P., Rutkowska, D.: Algorithm for Generating Fuzzy Rules for WWW Document Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)
Handl, J., Meyer, B.: Improved Ant-Based Clustering and Sorting. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 913–923. Springer, Heidelberg (2002)
Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. 25th Anniversary Machine Learning 85(25), 1–42 (2011)
Handl, J., Meyer, B.: Ant-based clustering and topographic mapping. Artificial Life 12(1), 35–61 (2006)
Fisher, R.A.: (1936), http://archive.ics.uci.edu/ml/datasets/iris
Web-Kb, http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
Web-Kb, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dziwiński, P., Bartczuk, Ł., Starczewski, J.T. (2012). Fully Controllable Ant Colony System for Text Data Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-29353-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29352-8
Online ISBN: 978-3-642-29353-5
eBook Packages: Computer ScienceComputer Science (R0)