Abstract
We propose a new system which is able to extract informative content from the news pages and divide it into prescribed sections. The system is based on the machine learning classifier incorporating different kind of information (styles, linguistic information, structural information, content semantic analysis) and conditional learning. According to empirical results the suggested system seems to be a promising tool for extracting information from web.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arasu, A., Garcia-Molina, H., University, S.: Extracting structured data from web pages. In: ACM SIGMOD 2003, pp. 337–348. ACM (2003)
Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data extraction from large web sites. In: 27th International Conference on Very Large Databases, VLDB, pp. 109–118 (2001)
Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites for automatic segmentation of tables. In: ACM SIGMOD 2004, pp. 119–130. ACM (2004)
Castro Reis, D., Golgher, P.B., Silva, A.S., Laenderl, A.H.F.: Automatic web news extraction using tree edit distance. In: Proceedings of the 13th International World Wide Web Conference, pp. 502–511. ACM Press, New York (2004)
Geng, H., Gao, Q., Pan, J.: Extracting Content for News Web Pages based on DOM. In: IJCSNS International Journal of Computer Science and Network Security, vol. 7(2) (2007)
Vineel, G.: Web Page DOM Node Characterization and its Application to Page Segmentation. In: Internet Multimedia Services Architecture and Applications (IMSAA). IEEE Press (2009)
Lin, S.H., Ho, J.M.: Discovering informative content blocks from web documents. In: KDD 2002 Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 588–593. ACM, New York (2002)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting nd labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, pp. 282–289 (2000)
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient Solver for SVM. In: ICML 2007 Proceedings of the 24th International Conference on Machine Learning, New York, pp. 807–814 (2007)
Ziegler, C.N., Skubacz, M.: Content extraction from news pages using particle swarm optimization on linguistic and structural features. In: Web Intelligence, pp. 242–249. IEEE Computer Society (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ładyżyński, P., Grzegorzewski, P. (2012). Retrieving Informative Content from Web Pages with Conditional Learning of Support Vector Machines and Semantic Analysis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-29350-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29349-8
Online ISBN: 978-3-642-29350-4
eBook Packages: Computer ScienceComputer Science (R0)