Nothing Special   »   [go: up one dir, main page]

Skip to main content

Retrieving Informative Content from Web Pages with Conditional Learning of Support Vector Machines and Semantic Analysis

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7268))

Included in the following conference series:

  • 1731 Accesses

Abstract

We propose a new system which is able to extract informative content from the news pages and divide it into prescribed sections. The system is based on the machine learning classifier incorporating different kind of information (styles, linguistic information, structural information, content semantic analysis) and conditional learning. According to empirical results the suggested system seems to be a promising tool for extracting information from web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arasu, A., Garcia-Molina, H., University, S.: Extracting structured data from web pages. In: ACM SIGMOD 2003, pp. 337–348. ACM (2003)

    Google Scholar 

  2. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data extraction from large web sites. In: 27th International Conference on Very Large Databases, VLDB, pp. 109–118 (2001)

    Google Scholar 

  3. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web sites for automatic segmentation of tables. In: ACM SIGMOD 2004, pp. 119–130. ACM (2004)

    Google Scholar 

  4. Castro Reis, D., Golgher, P.B., Silva, A.S., Laenderl, A.H.F.: Automatic web news extraction using tree edit distance. In: Proceedings of the 13th International World Wide Web Conference, pp. 502–511. ACM Press, New York (2004)

    Google Scholar 

  5. Geng, H., Gao, Q., Pan, J.: Extracting Content for News Web Pages based on DOM. In: IJCSNS International Journal of Computer Science and Network Security, vol. 7(2) (2007)

    Google Scholar 

  6. Vineel, G.: Web Page DOM Node Characterization and its Application to Page Segmentation. In: Internet Multimedia Services Architecture and Applications (IMSAA). IEEE Press (2009)

    Google Scholar 

  7. Lin, S.H., Ho, J.M.: Discovering informative content blocks from web documents. In: KDD 2002 Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 588–593. ACM, New York (2002)

    Chapter  Google Scholar 

  8. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting nd labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, San Francisco, pp. 282–289 (2000)

    Google Scholar 

  9. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-GrAdient Solver for SVM. In: ICML 2007 Proceedings of the 24th International Conference on Machine Learning, New York, pp. 807–814 (2007)

    Google Scholar 

  10. Ziegler, C.N., Skubacz, M.: Content extraction from news pages using particle swarm optimization on linguistic and structural features. In: Web Intelligence, pp. 242–249. IEEE Computer Society (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ładyżyński, P., Grzegorzewski, P. (2012). Retrieving Informative Content from Web Pages with Conditional Learning of Support Vector Machines and Semantic Analysis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29350-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29349-8

  • Online ISBN: 978-3-642-29350-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics