Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Non-progressive Spread of Influence through Social Networks

  • Conference paper
LATIN 2012: Theoretical Informatics (LATIN 2012)

Abstract

The spread of influence in social networks is studied in two main categories: the progressive model and the non-progressive model (see e.g. the seminal work of Kempe, Kleinberg, and Tardos in KDD 2003). While the progressive models are suitable for modeling the spread of influence in monopolistic settings, non-progressive are more appropriate for modeling non-monopolistic settings, e.g., modeling diffusion of two competing technologies over a social network. Despite the extensive work on the progressive model, non-progressive models have not been studied well. In this paper, we study the spread of influence in the nonprogressive model under the strict majority threshold: given a graph G with a set of initially infected nodes, each node gets infected at time τ iff a majority of its neighbors are infected at time τ – 1. Our goal in the MinPTS problem is to find a minimum-cardinality initial set of infected nodes that would eventually converge to a steady state where all nodes of G are infected.

We prove that while the MinPTS is NP-hard for a restricted family of graphs, it admits an improved constant-factor approximation algorithm for power-law graphs. We do so by proving lower and upper bounds in terms of the minimum and maximum degree of nodes in the graph. The upper bound is achieved in turn by applying a natural greedy algorithm. Our experimental evaluation of the greedy algorithm also shows its superior performance compared to other algorithms for a set of realworld graphs as well as the random power-law graphs. Finally, we study the convergence properties of these algorithms and show that the nonprogressive model converges in at most O(|E(G)|) steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial Model and Bounds for Target Set Selection. Theoretical Computer Science (2010)

    Google Scholar 

  2. Allan, R., Laskar, R.: On domination and independent domination numbers of a graph. Discrete Mathematics 23(2), 73–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: An exact almost optimal algorithm for target set selection in social networks. In: Proceedings of the Tenth ACM Conference on Electronic Commerce, pp. 355–362. ACM (2009)

    Google Scholar 

  4. Blume, L.: The statistical mechanics of strategic interaction. Games and Economic Behavior 5, 387–424 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, J., Reingen, P.: Social ties and word-of-mouth referral behavior. The Journal of Consumer Research 14(3), 350–362 (1987)

    Article  Google Scholar 

  6. Chang, C.: On reversible cascades in scale-free and Erdos Renyi random graphs. Arxiv preprint arXiv:1011.0653 (2010)

    Google Scholar 

  7. Chang, C., Lyuu, Y.: On irreversible dynamic monopolies in general graphs. Arxiv preprint arXiv:0904.2306 (2009)

    Google Scholar 

  8. Chang, C., Lyuu, Y.: Spreading messages. Theoretical Computer Science 410(27-29), 2714–2724 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, N.: On the approximability of influence in social networks. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1029–1037. Society for Industrial and Applied Mathematics (2008)

    Google Scholar 

  10. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2009)

    Google Scholar 

  11. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dezső, Z., Barabási, A.: Halting viruses in scale-free networks. Physical Review E 65(5), 55103 (2002)

    Article  Google Scholar 

  13. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD 2001: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 26-29, p. 57. Assn. for Computing Machinery, San Francisco (2001)

    Chapter  Google Scholar 

  14. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61, 1047–1071 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal rings. Discrete Applied Mathematics 113(1), 23–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flocchini, P., Královi, R., Ruika, P., Roncato, A., Santoro, N.: On time versus size for monotone dynamic monopolies in regular topologies. Journal of Discrete Algorithms 1(2), 129–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Applied Mathematics 137(2), 197–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freeman, L.: The development of social network analysis. Empirical Press, Vancouver (2004)

    Google Scholar 

  19. Goyal, A., Bonchi, F., Lakshmanan, L., Balcan, M., Harvey, N., Lapus, R., Simon, F., Tittmann, P., Ben-Shimon, S., Ferber, A., et al.: Approximation Analysis of Influence Spread in Social Networks. Arxiv preprint arXiv:1008.2005 (2010)

    Google Scholar 

  20. Immorlica, N., Kleinberg, J., Mahdian, M., Wexler, T.: The role of compatibility in the diffusion of technologies through social networks. In: Proceedings of the 8th ACM Conference on Electronic Commerce, EC 2007, pp. 75–83. ACM, New York (2007)

    Chapter  Google Scholar 

  21. Ivic, A.: Riemann zeta-function. John Wiley & Sons, Inc., One Wiley Drive, Somerset, NJ 08873 (USA), 340 (1985)

    Google Scholar 

  22. Jackson, M., Yariv, L.: Diffusion on social networks. Economie Publique 16, 69–82 (2005)

    Google Scholar 

  23. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  24. Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Proc. of 6th Colloquium on Structural Information and Communication Complexity, pp. 204–218. Citeseer (1999)

    Google Scholar 

  25. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 128–134. ACM (2007)

    Google Scholar 

  26. Mossel, E., Schoenebeck, G.: Reaching consensus on social networks. In: Innovations in Computer Science, ICS (2009)

    Google Scholar 

  27. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physical Review Letters 86(14), 3200–3203 (2001)

    Article  Google Scholar 

  28. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoretical Computer Science 282(2), 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pike, D., Zou, Y.: Decycling Cartesian products of two cycles. SIAM Journal on Discrete Mathematics 19, 651 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70. ACM (2002)

    Google Scholar 

  31. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 807–816. ACM (2009)

    Google Scholar 

  32. Wilson, D.: Levels of selection: An alternative to individualism in biology and the human sciences. Social Networks 11(3), 257–272 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fazli, M., Ghodsi, M., Habibi, J., Jalaly Khalilabadi, P., Mirrokni, V., Sadeghabad, S.S. (2012). On the Non-progressive Spread of Influence through Social Networks. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics