Nothing Special   »   [go: up one dir, main page]

Skip to main content

SensOrchestra: Collaborative Sensing for Symbolic Location Recognition

  • Conference paper
Mobile Computing, Applications, and Services (MobiCASE 2010)

Abstract

Symbolic location of a user, like a store name in a mall, is essential for context-based mobile advertising. Existing fingerprint-based localization using only a single phone is susceptible to noise, and has a major limitation in that the phone has to be held in the hand at all times. In this paper, we present SensOrchestra, a collaborative sensing framework for symbolic location recognition that groups nearby phones to recognize ambient sounds and images of a location collaboratively. We investigated audio and image features, and designed a classifier fusion model to integrate estimates from different phones. We also evaluated the energy consumption, bandwidth, and response time of the system. Experimental results show that SensOrchestra achieved 87.7% recognition accuracy, which reduces the error rate of single-phone approach by 2X, and eliminates the limitations on how users carry their phones. We believe general location or activity recognition systems can all benefit from this collaborative framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azizyan, M., Constandache, I., Roy Choudhury, R.: SurroundSense: mobile phone localization via ambience fingerprinting. In: Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, pp. 261–272. ACM (2009)

    Google Scholar 

  2. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2000, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  3. Bao, X., Choudhury, R.R.: VUPoints: Collaborative Sensing and Video Recording through Mobile Phones. In: Proceedings of The First ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds, pp. 7–12 (2009)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  5. Bosch, A., Zisserman, A., Munoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 712–727 (2008)

    Article  Google Scholar 

  6. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  7. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW 2006): Mobile Device Centric Sensor Networks and Applications, pp. 117–134 (2006)

    Google Scholar 

  8. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  9. Chu, S., Narayanan, S., Kuo, C.-C.J.: Environmental sound recognition with time-frequency audio features. IEEE Transactions on Audio, Speech and Language Processing 17(6), 1142–1158 (2009)

    Article  Google Scholar 

  10. Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin, H.: An efficient color representation for image retrieval. IEEE Transactions on Image Processing 10, 140–147 (2001)

    Article  MATH  Google Scholar 

  11. Eronen, A.J., Peltonen, V.T., Tuomi, J.T., Klapuri, A.P., Fagerlund, S., Sorsa, T., Lorho, G., Huopaniemi, J.: Audio-based context recognition. IEEE Transactions on Audio, Speech, and Language Processing 14(1), 321–329 (2006)

    Article  Google Scholar 

  12. Fang, Z., Guoliang, Z., Zhanjiang, S.: Comparison of different implementations of MFCC. Journal of Computer Science and Technology 16(6), 582–589 (2001)

    Article  MATH  Google Scholar 

  13. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 881–892 (2002)

    Article  MATH  Google Scholar 

  14. Kuulusa, M., Bosch, G.: Nokia Energy Profiler Version 1.2 (2009), Software available at http://www.forum.nokia.com/Library/Tools_and_downloads/Other/Nokia_Energy_Profiler/

  15. Lin, H., Zhang, Y., Griss, M., Landa, I.: WASP: An Enhanced Indoor Locationing Algorithm for a Congested Wi-Fi Environment. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 183–196. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  17. Lu, H., Pan, W., Lane, N., Choudhury, T., Campbell, A.: SoundSense: scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 165–178. ACM, New York (2009)

    Google Scholar 

  18. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: SenSys 2008: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 337–350. ACM (2008)

    Google Scholar 

  19. Mun, M., Boda, P., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R.: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 55–68 (2009)

    Google Scholar 

  20. Narayanaswami, C., Coffman, D., Lee, M.C., Moon, Y.S., Han, J.H., Jang, H.K., McFaddin, S., Paik, Y.S., Kim, J.H., Lee, J.K., Park, J.W., Soroker, D.: Pervasive symbiotic advertising. In: HotMobile 2008: Proceedings of the 9th Workshop on Mobile Computing Systems and Applications, pp. 80–85. ACM (2008)

    Google Scholar 

  21. Partridge, K., Begole, B., Alto, P., Road, C.H.: Activity-based Advertising: Techniques and Challenges. In: Proceedings of the 1st Workshop on Pervasive Advertising, pp. 2–5 (2009)

    Google Scholar 

  22. Paxton, M., Benford, S.: Experiences of participatory sensing in the wild. In: Ubicomp 2009: Proceedings of the 11th International Conference on Ubiquitous Computing, pp. 265–274. ACM (2009)

    Google Scholar 

  23. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of ACM International Conference on Mobile Computing and Networking, pp. 32–43 (2000)

    Google Scholar 

  24. Rimey, K.: Personal Distributed Information Store (PDIS) Project (2004), Software available at http://pdis.hiit.fi/pdis/download/

  25. Sala, M.C., Partridge, K., Jacobson, L., Begole, J.: An Exploration into Activity-Informed Physical Advertising Using PEST. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 73–90. Springer, Heidelberg (2007), http://www.springerlink.com/index/U5692H972H232382.pdf

    Chapter  Google Scholar 

  26. Scheible, J., Tuulos, V.: Mobile Python: Rapid prototyping of applications on the mobile platform. Wiley Publishing (2007)

    Google Scholar 

  27. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N.: A framework of energy efficient mobile sensing for automatic user state recognition. In: MobiSys 2009: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 179–192. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Cheng, HT., Sun, FT., Buthpitiya, S., Griss, M. (2012). SensOrchestra: Collaborative Sensing for Symbolic Location Recognition. In: Gris, M., Yang, G. (eds) Mobile Computing, Applications, and Services. MobiCASE 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29336-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29336-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29335-1

  • Online ISBN: 978-3-642-29336-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics