Nothing Special   »   [go: up one dir, main page]

Skip to main content

Collaborative Filtering via Temporal Euclidean Embedding

  • Conference paper
Web Technologies and Applications (APWeb 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7235))

Included in the following conference series:

Abstract

Recommender systems are considered as a promising approach to solve the problem of information overload. In collaborative filtering recommender systems, one of the most accurate and scalable algorithms is matrix factorization. As an alternative to this popular latent factor model, Euclidean embedding model presents the relationship between users and items intuitively, and generates recommendations fast. In this paper, a temporal Euclidean embedding (TEE) model is proposed by incorporating temporal factors of rating behavior. Through experiments on Netflix and Movielens data sets, we show the improvement of prediction accuracy, while keeping the efficiency of recommendation generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Candillier, L., Meyer, F., Boulle, M.: Comparing State-of-the-Art Collaborative Filtering Systems. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 548–562. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Handbook on Recommender Systems. Springer, Heidelberg (2009)

    Google Scholar 

  3. Kurucz, M., Benczúr, A., Csalogány, K.: Methods for large scale SVD with missing values. In: KDD 2007: Netflix Competition Workshop (2007)

    Google Scholar 

  4. Peterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: KDD 2007: Netflix Competition Workshop (2007)

    Google Scholar 

  5. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: Matrix factorization and neighbor based algorithms for the Netflix Prize problem. In: Proc., 2008 ACM Conference on Recommender Systems (RECSYS 2008), pp. 267–274 (2008)

    Google Scholar 

  6. Borg, I., Groenen, P.: Modern multidimensional scaling. Springer, New York (1997)

    MATH  Google Scholar 

  7. Khoshneshin, M., Nick Street, W.: Collaborative filtering via Euclidean embedding. In: Recsys 2010 (2010)

    Google Scholar 

  8. Cox, M.A.A., Cox, T.F.: Multidimensional scaling. In: Handbook of Data Visualization. Springer Handbooks of Computational Statistics, vol. III, pp. 315–347 (2008)

    Google Scholar 

  9. Fodor, I.K.: A survey of dimension reduction techniques. Technical Report UCRL-ID-148494, Lawrence Livermore National Laboratory (2002)

    Google Scholar 

  10. Fisher, D., Hildrum, K., Hong, J., Newman, M., THomas, M., Vuduc, R.: Swami.: A framework for collaborative filtering algorithm development and evaluation. In: SIGIR 2000, Citeseer (2000)

    Google Scholar 

  11. Bennet, J., Lanning, S.: The Netflix Prize. In: KDD Cup and Workshop (2007), www.netflixprize.com

  12. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD 2009 (2009)

    Google Scholar 

  13. Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender systems. In: SIGIR 2010 Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (2010)

    Google Scholar 

  14. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proc. 14th ACM International Conference on Information and Knowledge Management (CIKM 2004), pp. 485–492 (2004)

    Google Scholar 

  15. Lu, Z., Agalwal, D., Dhillon, I.S.: A spatio-temporal approach to collaborative filtering. In: Proceedings of the 3rd ACM Conference on Recommender Systems, RecSys 2009, pp. 13–20. ACM, New York (2009)

    Chapter  Google Scholar 

  16. Xiong, L., Chen, X., Huang, T.-K., Schneider, J., Carbonell, J.G.: Temporal collaborative filtering with Bayesian probabilistic tensor factorization. In: Proceedings of SIAM Data Mining 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, L., Wang, Y., Yu, Y. (2012). Collaborative Filtering via Temporal Euclidean Embedding. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds) Web Technologies and Applications. APWeb 2012. Lecture Notes in Computer Science, vol 7235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29253-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29253-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29252-1

  • Online ISBN: 978-3-642-29253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics