Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively: Steps towards a Taxonomy

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7248))

Included in the following conference series:

Abstract

This paper shows the results of a review about modeling, evaluating and increasing players’ satisfaction in computer games. The paper starts discussing the main stages of development of quantitative solutions, and then it tries to propose a taxonomy that represents the most common trends. In the first part of this paper we take as base some approaches that were already described in the literature for quantitatively capturing and increasing the real-time entertainment value in computer games. In a second part we analyze the stage in which the game’s environment is adapted in response to player needs, and the main trends on this theme are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Machado, M.C., Fantini, E.P.C., Chaimowicz, L.: Player modeling: Towards a common taxonomy. In: 16th International Conference on Computer Games (CGAMES), pp. 50–57 (July 2011)

    Google Scholar 

  2. Official wiki of IEEE Task Force on Player Satisfaction Modeling (2011), http://gameai.itu.dk/psm

  3. Fernández-Leiva, A.J., Barragán, J.L.O.: Decision Tree-Based Algorithms for Implementing Bot AI in UT2004. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 383–392. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Yannakakis, G.: How to model and augment player satisfaction: A review. In: Proceedings of the 1st Workshop on Child, Computer and Interaction, WOCCI 2008. ACM Press (2008)

    Google Scholar 

  5. Malone, T.: What makes things fun to learn? Heuristics for designing instructional computer games. In: Proceedings of the 3rd ACM SIGSMALL Symposium and the First SIGPC Symposium on Small Systems, vol. 162, pp. 162–169. ACM (1980)

    Google Scholar 

  6. Czikszentmihalyi, M.: Flow: The psychology of optimal experience. Harper & Row, New York (1990)

    Google Scholar 

  7. Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in games. Computers in Entertainment (3), 3 (2005)

    Article  Google Scholar 

  8. Lazzaro, N.: Why we play games: Four keys to more emotion without story. Technical report, XEODesign, Inc. (2005)

    Google Scholar 

  9. Calleja, G.: Revising immersion: A conceptual model for the analysis of digital game involvement. In: Akira, B. (ed.) Situated Play: Proceedings of the 2007 Digital Games Research Association Conference, pp. 83–90. The University of Tokyo, Tokyo (2007)

    Google Scholar 

  10. Aarseth, E.: Playing research: Methodological approaches to game analysis. In: Digital Games Research Conference 2003. University of Utrecht, The Netherlands (November 2003)

    Google Scholar 

  11. Livingstone, D.: Turing’s test and believable ai in games. Computers in Entertainment 4(1) (2006)

    Google Scholar 

  12. Hagelbäck, J., Johansson, S.J.: A study on human like characteristics in real time strategy games. In: [29], pp. 139–145

    Google Scholar 

  13. Yannakakis, G., Togelius, J.: Tutorial on measuring and optimizing player satisfaction. In: IEEE Symposium on Computational Intelligence and Games, CIG 2008, pp. xiv –xvi. IEEE Press (2008)

    Google Scholar 

  14. Charles, D., Black, M.: Dynamic player modeling: A framework for player-centered digital games. In: Mehdi, Q., Gough, N., Natkin, S., Al-Dabass, D. (eds.) Proc. of 5th Game-on International Conference on Computer Games: Artificial Intelligence, Design and Education, CGAIDE 2004, pp. 29–35. University of Wolverhampton School of Computing (2004)

    Google Scholar 

  15. Cowley, B., Charles, D., Black, M., Hickey, R.: Using decision theory for player analysis in pacman. In: Proceedings of SAB 2006 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games, Rome, Italy, pp. 41–50 (2006)

    Google Scholar 

  16. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. T. Affective Computing 2(3), 147–161 (2011)

    Article  Google Scholar 

  17. Martínez, H.P., Hullett, K., Yannakakis, G.N.: Extending neuro-evolutionary preference learning through player modeling. In: [29], 313–320

    Google Scholar 

  18. Nesbitt, K.V., Hoskens, I.: Multi-sensory game interface improves player satisfaction but not performance. In: Proceedings of the Ninth Conference on Australasian User Interface, AUIC 2008, pp. 13–18. Australian Computer Society, Inc., Darlinghurst (2008)

    Google Scholar 

  19. Yannakakis, G.N., Hallam, J.: Capturing player enjoyment in computer games. In: Baba, N., Jain, L.C., Handa, H. (eds.) Advanced Intelligent Paradigms in Computer Games. SCI, vol. 71, pp. 175–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Baba, N., Handa, H., Kusaka, M., Takeda, M., Yoshihara, Y., Kogawa, K.: Utilization of Evolutionary Algorithms for Making COMMONS GAME Much More Exciting. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS, vol. 6278, pp. 555–561. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Coello, C.A.C.: Evolutionary multi-objective optimization: Current state and future challenges. In: Nedjah, N., de Macedo Mourelle, L., Abraham, A., Köppen, M. (eds.) 5th International Conference on Hybrid Intelligent Systems (HIS 2005), p. 5. IEEE Computer Society, Rio de Janeiro (2005)

    Google Scholar 

  22. Yannakakis, G.N., Hallam, J.: Real-time game adaptation for optimizing player satisfaction. IEEE Trans. Comput. Intellig. and AI in Games 1(2), 121–133 (2009)

    Article  Google Scholar 

  23. Tognetti, S., Garbarino, M., Bonarini, A., Matteucci, M.: Modeling enjoyment preference from physiological responses in a car racing game. In: [29], 321–328

    Google Scholar 

  24. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content generation: A taxonomy and survey. IEEE Trans. Comput. Intellig. and AI in Games 3(3), 172–186 (2011)

    Article  Google Scholar 

  25. Klimmt, C., Blake, C., Hefner, D., Vorderer, P., Roth, C.: Player Performance, Satisfaction, and Video Game Enjoyment. In: Natkin, S., Dupire, J. (eds.) ICEC 2009. LNCS, vol. 5709, pp. 1–12. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Yannakakis, G.N., Hallam, J.: Real-time adaptation of augmented-reality games for optimizing player satisfaction. In: Hingston, P., Barone, L. (eds.) 2008 IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 103–110. IEEE, Perth (2008)

    Chapter  Google Scholar 

  27. García, J.A., Cotta, C., Fernández-Leiva, A.J.: Design of Emergent and Adaptive Virtual Players in a War RTS Game. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 372–382. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)

    Article  Google Scholar 

  29. Yannakakis, G.N., Togelius, J. (eds.): Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, CIG 2010, Copenhagen, Denmark, August 18-21. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nogueira, M., Cotta, C., Fernández-Leiva, A.J. (2012). On Modeling, Evaluating and Increasing Players’ Satisfaction Quantitatively: Steps towards a Taxonomy. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol 7248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29178-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29178-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29177-7

  • Online ISBN: 978-3-642-29178-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics