Abstract
We present a multi-objective evolutionary approach to predict protein contact maps. The algorithm provides a set of rules, inferring whether there is contact between a pair of residues or not. Such rules are based on a set of specific amino acid properties. These properties determine the particular features of each amino acid represented in the rules. In order to test the validity of our proposal, we have compared results obtained by our method with results obtained by other classification methods. The algorithm shows better accuracy and coverage rates than other contact map predictor algorithms. A statistical analysis of the resulting rules was also performed in order to extract conclusions of the protein folding problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anfinsen, C.: The formation and stabilization of protein structure. The Biochemical Journal 128, 737–749 (1972)
Bashan, A., Yonath, A.: Ribosome crystallography: From early evolution to contemporary medical. Ribosomes Structure, Function, and Dynamics, 3–18 (2011)
Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact map with neural networks and correlated mutations. Protein Engineering 14, 133–154 (2001)
Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: Nncon: Improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37(2), 515–518 (2009)
Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. Bioinformatics 8, 113 (2007)
Gupta, N., Mangal, N., Biswas, S.: Evolution and similarity evaluation of protein structures in contact map space. Proteins: Structure, Function, and Bioinformatics 59, 196–204 (2005)
Zhang, Y.: I-tasser: fully automated protein structure prediction in casp8. Proteins: Structure, Function, and Bioinformatics 77, 100–113 (2009)
Kinch, L.N., Shi, S., Cheng, H., Qian Cong, Q., Pei, J., Mariani, V., Schwede, T., Grishin, N.V.: Casp9 target classification. Proteins: Structure, Function, and Bioinformatics 79, 21–36 (2011)
Cui, Y., Chen, R.S., Hung, W.: Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics 31, 247–257 (1998)
Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Biochim. Biophys. 231, 75–81 (1993)
Zhang, G., Han, K.: Hepatitis c virus contact map prediction based on binary strategy. Comp. Biol. and Chem. 31, 233–238 (2007)
Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91(9), 992–1007 (2006)
Judya, M.V., Ravichandrana, K.S., Murugesan, K.: A multi-objective evolutionary algorithm for protein structure prediction with immune operators. Comp. Methods in Biomechanics and Biomedical Engineering 12(4), 407–413 (2009)
Calvo, J.C., Ortega, J.: Parallel protein structure prediction by multiobjective optimization. Parallel, Distributed and Network-based Processing 12(4), 407–413 (2009)
Shi, S., Suganthan, N.: Parallel protein structure prediction by multiobjective optimization. KanGAL Report 7, 1–7 (2004)
Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to the protein structure prediction problem. J. R. Soc. Interface 3, 139–151 (2006)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)
Grantham, R.: Amino acid difference formula to help explain protein evolution. J. Mol. Bio. 185, 862–864 (1974)
Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Bioch. Bioph. 787, 221–226 (1984)
Dawson, D.M.: The Biochemical Genetics of Man. Brock, D.J.H., Mayo, O., eds. (1972)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11 (2009)
Fernandez, M.A., Paredes, A.B., Ortiz, L.R., Rosas, J.L.: Sistema predictor de estructuras de proteínas utilizando dinámica molecular (modypp). Revista Internacional de Sistemas Computacionales y Electrónicos, 6–16 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Márquez-Chamorro, A.E., Divina, F., Aguilar-Ruiz, J.S., Bacardit, J., Asencio-Cortés, G., Santiesteban-Toca, C.E. (2012). A NSGA-II Algorithm for the Residue-Residue Contact Prediction. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-29066-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29065-7
Online ISBN: 978-3-642-29066-4
eBook Packages: Computer ScienceComputer Science (R0)