Nothing Special   »   [go: up one dir, main page]

Skip to main content

A NSGA-II Algorithm for the Residue-Residue Contact Prediction

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

We present a multi-objective evolutionary approach to predict protein contact maps. The algorithm provides a set of rules, inferring whether there is contact between a pair of residues or not. Such rules are based on a set of specific amino acid properties. These properties determine the particular features of each amino acid represented in the rules. In order to test the validity of our proposal, we have compared results obtained by our method with results obtained by other classification methods. The algorithm shows better accuracy and coverage rates than other contact map predictor algorithms. A statistical analysis of the resulting rules was also performed in order to extract conclusions of the protein folding problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anfinsen, C.: The formation and stabilization of protein structure. The Biochemical Journal 128, 737–749 (1972)

    Google Scholar 

  2. Bashan, A., Yonath, A.: Ribosome crystallography: From early evolution to contemporary medical. Ribosomes Structure, Function, and Dynamics, 3–18 (2011)

    Google Scholar 

  3. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact map with neural networks and correlated mutations. Protein Engineering 14, 133–154 (2001)

    Google Scholar 

  4. Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: Nncon: Improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37(2), 515–518 (2009)

    Article  Google Scholar 

  5. Cheng, J., Baldi, P.: Improved residue contact prediction using support vector machines and a large feature set. Bioinformatics 8, 113 (2007)

    Google Scholar 

  6. Gupta, N., Mangal, N., Biswas, S.: Evolution and similarity evaluation of protein structures in contact map space. Proteins: Structure, Function, and Bioinformatics 59, 196–204 (2005)

    Article  Google Scholar 

  7. Zhang, Y.: I-tasser: fully automated protein structure prediction in casp8. Proteins: Structure, Function, and Bioinformatics 77, 100–113 (2009)

    Article  Google Scholar 

  8. Kinch, L.N., Shi, S., Cheng, H., Qian Cong, Q., Pei, J., Mariani, V., Schwede, T., Grishin, N.V.: Casp9 target classification. Proteins: Structure, Function, and Bioinformatics 79, 21–36 (2011)

    Article  Google Scholar 

  9. Cui, Y., Chen, R.S., Hung, W.: Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics 31, 247–257 (1998)

    Article  Google Scholar 

  10. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Biochim. Biophys. 231, 75–81 (1993)

    Google Scholar 

  11. Zhang, G., Han, K.: Hepatitis c virus contact map prediction based on binary strategy. Comp. Biol. and Chem. 31, 233–238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91(9), 992–1007 (2006)

    Article  Google Scholar 

  13. Judya, M.V., Ravichandrana, K.S., Murugesan, K.: A multi-objective evolutionary algorithm for protein structure prediction with immune operators. Comp. Methods in Biomechanics and Biomedical Engineering 12(4), 407–413 (2009)

    Article  Google Scholar 

  14. Calvo, J.C., Ortega, J.: Parallel protein structure prediction by multiobjective optimization. Parallel, Distributed and Network-based Processing 12(4), 407–413 (2009)

    Google Scholar 

  15. Shi, S., Suganthan, N.: Parallel protein structure prediction by multiobjective optimization. KanGAL Report 7, 1–7 (2004)

    Google Scholar 

  16. Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to the protein structure prediction problem. J. R. Soc. Interface 3, 139–151 (2006)

    Article  Google Scholar 

  17. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)

    Article  Google Scholar 

  19. Grantham, R.: Amino acid difference formula to help explain protein evolution. J. Mol. Bio. 185, 862–864 (1974)

    Google Scholar 

  20. Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Bioch. Bioph. 787, 221–226 (1984)

    Google Scholar 

  21. Dawson, D.M.: The Biochemical Genetics of Man. Brock, D.J.H., Mayo, O., eds. (1972)

    Google Scholar 

  22. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11 (2009)

    Google Scholar 

  23. Fernandez, M.A., Paredes, A.B., Ortiz, L.R., Rosas, J.L.: Sistema predictor de estructuras de proteínas utilizando dinámica molecular (modypp). Revista Internacional de Sistemas Computacionales y Electrónicos, 6–16 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Márquez-Chamorro, A.E., Divina, F., Aguilar-Ruiz, J.S., Bacardit, J., Asencio-Cortés, G., Santiesteban-Toca, C.E. (2012). A NSGA-II Algorithm for the Residue-Residue Contact Prediction. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics