Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Spectral Clustering in Molecular Simulation

  • Conference paper
  • First Online:
Classification and Data Mining

Abstract

In this chapter, PCCA + is described as a special spectral clustering algorithm which is applicable for molecular simulation data. From a mathematical point of view, only PCCA + is able to correctly identify the physical timescales of molecular motion. In order to decrease the statistical error of this timescales analysis, an adaptive clustering algorithm is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bujotzek, A., & Weber, M. (2009). Efficient simulation of ligand-receptor binding processes using the conformation dynamics approach. Journal of Bioinformatics and Computational Biology, 7(5), 811–831.

    Article  Google Scholar 

  • Deuflhard, P., & Weber, M. (2005). Robust perron cluster analysis in conformation dynamics. Linear Algebra and its Applications, 398c, 161–184.

    Google Scholar 

  • Haack, F., Röblitz, S., Scharkoi, O., Schmidt, B., & Weber, M. (2010). Adaptive spectral clustering for conformation analysis. ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 1585–1588.

    Google Scholar 

  • Klimm, M., Bujotzek, A., & Weber, M. (2011). Direct reweighting strategies in conformation dynamics. MATCH, 65, 333–346.

    MathSciNet  Google Scholar 

  • Kube, S., & Weber, M. (2007). A coarse-graining method for the identification of transition rates between molecular conformations. The Journal of Chemical Physics, 126(2), 024103.

    Article  MathSciNet  Google Scholar 

  • Röblitz, S. (2008). Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral Thesis, FU Berlin.

    Google Scholar 

  • von Luxburg, U. (2007). A Tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.

    Article  MathSciNet  Google Scholar 

  • Weber, M. (2006). Meshless methods in conformation dynamics. München: Verlag Dr. Hut. ISBN 3-89963-307-5.

    MATH  Google Scholar 

  • Weber, M. (2009). A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator, ZIB Report 09–27, Zuse-Institut Berlin.

    Google Scholar 

  • Weber, M., & Andrae, K. (2010). A simple method for the estimation of entropy differences. MATCH Communications in Mathematical and in Computer Chemistry, 63(2), 319–332.

    MathSciNet  Google Scholar 

  • Weber, M., & Kube, S. (2008) Preserving the markov property of reduced reversible markov chains. Numerical Analysis and Applied Mathematics, International Conference on Numerical Analysis and Applied Mathematics 2008, AIP Conference Proceedings, 1048, 593–596.

    Google Scholar 

  • Weber, M., Kube, S., Walter L., & Deuflhard, P. (2007). Stable computation of probability densities for metastable dynamical systems. SIAM Journal of Multiscale Modeling and Simulation, 6(2), 396–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Weber, M., Rungsarityotin, W., & Schliep, A. (2006). An indicator for the number of clusters using a linear map to simplex structure. In: From Data and Information Analysis to Knowledge Engineering, 29th Annual Conference of the German Classification Society 2005, March 9–11, Studies in Classification, Data Analysis, and Knowledge (pp. 103–110). Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weber, M. (2013). Adaptive Spectral Clustering in Molecular Simulation. In: Giusti, A., Ritter, G., Vichi, M. (eds) Classification and Data Mining. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28894-4_18

Download citation

Publish with us

Policies and ethics