Abstract
In this chapter, PCCA + is described as a special spectral clustering algorithm which is applicable for molecular simulation data. From a mathematical point of view, only PCCA + is able to correctly identify the physical timescales of molecular motion. In order to decrease the statistical error of this timescales analysis, an adaptive clustering algorithm is necessary.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bujotzek, A., & Weber, M. (2009). Efficient simulation of ligand-receptor binding processes using the conformation dynamics approach. Journal of Bioinformatics and Computational Biology, 7(5), 811–831.
Deuflhard, P., & Weber, M. (2005). Robust perron cluster analysis in conformation dynamics. Linear Algebra and its Applications, 398c, 161–184.
Haack, F., Röblitz, S., Scharkoi, O., Schmidt, B., & Weber, M. (2010). Adaptive spectral clustering for conformation analysis. ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 1585–1588.
Klimm, M., Bujotzek, A., & Weber, M. (2011). Direct reweighting strategies in conformation dynamics. MATCH, 65, 333–346.
Kube, S., & Weber, M. (2007). A coarse-graining method for the identification of transition rates between molecular conformations. The Journal of Chemical Physics, 126(2), 024103.
Röblitz, S. (2008). Statistical error estimation and grid-free hierarchical refinement in conformation dynamics. Doctoral Thesis, FU Berlin.
von Luxburg, U. (2007). A Tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
Weber, M. (2006). Meshless methods in conformation dynamics. München: Verlag Dr. Hut. ISBN 3-89963-307-5.
Weber, M. (2009). A Subspace Approach to Molecular Markov State Models via an Infinitesimal Generator, ZIB Report 09–27, Zuse-Institut Berlin.
Weber, M., & Andrae, K. (2010). A simple method for the estimation of entropy differences. MATCH Communications in Mathematical and in Computer Chemistry, 63(2), 319–332.
Weber, M., & Kube, S. (2008) Preserving the markov property of reduced reversible markov chains. Numerical Analysis and Applied Mathematics, International Conference on Numerical Analysis and Applied Mathematics 2008, AIP Conference Proceedings, 1048, 593–596.
Weber, M., Kube, S., Walter L., & Deuflhard, P. (2007). Stable computation of probability densities for metastable dynamical systems. SIAM Journal of Multiscale Modeling and Simulation, 6(2), 396–416.
Weber, M., Rungsarityotin, W., & Schliep, A. (2006). An indicator for the number of clusters using a linear map to simplex structure. In: From Data and Information Analysis to Knowledge Engineering, 29th Annual Conference of the German Classification Society 2005, March 9–11, Studies in Classification, Data Analysis, and Knowledge (pp. 103–110). Heidelberg: Springer.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Weber, M. (2013). Adaptive Spectral Clustering in Molecular Simulation. In: Giusti, A., Ritter, G., Vichi, M. (eds) Classification and Data Mining. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28894-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-28894-4_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28893-7
Online ISBN: 978-3-642-28894-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)