Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

High-throughput sequencing technologies are a significant innovation that can contribute to important advances in genetic research. In recent years, many algorithms have been developed to align the large number of short nucleotide sequences generated by these technologies. Choosing within the available alignment algorithms is difficult; to assist this decision we evaluate several algorithms for the mapping of RNA-Seq data. The comparison was completed in two phases. An initial phase narrowed down the comparison to the three algorithms implemented in the tools: ELAND, Bowtie and BWA. A second phase compared the tools in terms of runtime, alignment coverage and process control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Craig Venter, J., et al.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001); doi:10.1126/science.1058040

    Google Scholar 

  2. Sinsheimer, R.L.: Sequencing the human genome: summary report of the Santa Fe workshop. Genomics 5(4), 954–956 (1989)

    Article  Google Scholar 

  3. US Department of Health and Human Services and Department of Energy: Understanding our genetic inheritance. The U.S. human genome project: the first five years. US Dept. of Health and Human Services, Washington, DC (1990)

    Google Scholar 

  4. Strauss, E.C., Kobori, J.A., Siu, G., Hood, L.E.: Specific-primer-directed DNA sequencing. Anal. Biochem. 154(1), 353–360 (1986)

    Article  Google Scholar 

  5. Yang, G., Ho, M.-H., Hubbell, E.: High-throughput microarray-based genotyping. In: IEEE Computational Systems Bioinformatics Conference, pp. 586–587 (2004)

    Google Scholar 

  6. Hall, N.: Advanced sequencing technologies and their wider impact in microbiology. The Journal of Experimental Biology 210(9), 1518–1525 (2007); doi:10.1242/jeb.001370

    Google Scholar 

  7. Pop, M., Salzberg, S., Shumway, M.: Genome sequence assembly: algorithms and issues. IEEE Computer 35, 47–54 (2002)

    Article  Google Scholar 

  8. Mount, D.M.: Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,(2004); ISBN: 0-87969-608-7

    Google Scholar 

  9. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  10. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)

    Article  Google Scholar 

  11. Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., Wilson, A.: Geneious v5.1 (2010), http://www.geneious.com

  12. CLC Main Workbench: A comprehensive workbench for advanced DNA, RNA, and protein analyses, http://www.clcbio.com

  13. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10(3), R25 (2009)

    Google Scholar 

  14. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(19), 1754–1760 (2009)

    Article  Google Scholar 

  15. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Miller, W., et al.: Galaxy: a platform for interactive large-scale genome analysis. Genome Research 15(10), 1451–1455 (2005)

    Article  Google Scholar 

  16. Illumina: Illumina sequencing, http://www.illumina.com

  17. Nelson, M.: Data compression with the Burrows-Wheeler transform. Dr. Dobb’s Journal of Software Tools 21(9), 46–50 (1996)

    Google Scholar 

  18. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009)

    Article  Google Scholar 

  19. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)

    Article  Google Scholar 

  20. Hoffmann, S., Otto, C., Kurtz, S., Sharma, C.M., Khaitovich, P., Vogel, J., Stadler, P.F., Hackermuller, J.: Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Computational Biology 5(9), R1000502 (2009)

    Google Scholar 

  21. Ruffalo, M., Laframboise, T., Koyutürk, M.: Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics 27(20), 2790–2796 (2011)

    Article  Google Scholar 

  22. Heng, L., Nils, H.: A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics 11(5), 473–483 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Medina-Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medina-Medina, N. et al. (2012). Comparing Bowtie and BWA to Align Short Reads from a RNA-Seq Experiment. In: Rocha, M., Luscombe, N., Fdez-Riverola, F., Rodríguez, J. (eds) 6th International Conference on Practical Applications of Computational Biology & Bioinformatics. Advances in Intelligent and Soft Computing, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28839-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28839-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28838-8

  • Online ISBN: 978-3-642-28839-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics