Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Artificial Epigenetic Regulatory Networks to Control Complex Tasks within Chaotic Systems

  • Conference paper
Information Processign in Cells and Tissues (IPCAT 2012)

Abstract

Artificial gene regulatory networks are computational models which draw inspiration from real world networks of biological gene regulation. Since their inception they have been used to infer knowledge about gene regulation and as methods of computation. These computational models have been shown to possess properties typically found in the biological world such as robustness and self organisation. Recently, it has become apparent that epigenetic mechanisms play an important role in gene regulation. This paper introduces a new model, the Artificial Epigenetic Regulatory Network (AERN) which builds upon existing models by adding an epigenetic control layer. The results demonstrate that the AERNs are more adept at controlling multiple opposing trajectories within Chirikov’s standard map, suggesting that AERNs are an interesting area for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.: Molecular Biology of the Cell, 3rd edn. Oxford Univ. Press (1994)

    Google Scholar 

  2. Allis, C., Jenuwein, T., Reinberg, D.: Epigenetics. Cold Spring Harbor Laboratory Press (2007)

    Google Scholar 

  3. Bird, A.: DNA methylation patterns and epigenetic memory. Genes & Development 16(1), 6 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bird, A.: Perceptions of epigenetics. Nature 447(7143), 396 (2007)

    Article  Google Scholar 

  5. Bollt, E., Meiss, J.: Controlling chaotic transport through recurrence. Physica D: Nonlinear Phenomena 81(3), 280–294 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bushman, F.: Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor Laboratory Press (2002)

    Google Scholar 

  7. Cedar, H., Bergman, Y.: Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10(5), 295–304 (2009)

    Article  Google Scholar 

  8. Chirikov, B., Sanders, A.: Research concerning the theory of non-linear resonance and stochasticity. Nuclear Physics Institute of the Siberian Section of the USSR Academy of Sciences (1971)

    Google Scholar 

  9. Fraser, C., Gocayne, J., White, O., Adams, M., Clayton, R., Fleischmann, R., Bult, C., Kerlavage, A., Sutton, G., Kelley, J., et al.: The minimal gene complement of mycoplasma genitalium. Science 270(5235), 397 (1995)

    Article  Google Scholar 

  10. Harvey, I., Bossomaier, T.: Time out of joint: Attractors in asynchronous random boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75. MIT Press, Cambridge (1997)

    Google Scholar 

  11. Hattman, S.: Dna-[adenine] methylation in lower eukaryotes. Biochemistry 70(5), 550–558 (2005)

    Article  Google Scholar 

  12. Jackson, J., Lindroth, A., Cao, X., Jacobsen, S.: Control of CpNpG DNA methylation by the kryptonite histone h3 methyltransferase. Nature 416(6880), 556–560 (2002)

    Article  Google Scholar 

  13. Jeanteur, P.: Epigenetics and Chromatin. Progress in Molecular and Subcellular Biology. Springer, Heidelberg (2008)

    Google Scholar 

  14. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences of the United States of America 100(25), 14796–14799 (2003)

    Article  Google Scholar 

  15. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22(3), 437–467 (1969)

    Article  Google Scholar 

  16. Kumar, S.: The evolution of genetic regulatory networks for single and multicellular development. In: GECCO. Citeseer (2004)

    Google Scholar 

  17. Latchman, D.S.: Gene regulation: a eukaryotic perspective. Advanced text. Taylor & Francis (2005)

    Google Scholar 

  18. Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S.: Controlling Complex Dynamics with Artificial Biochemical Networks. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 159–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Mitchell, M.: An introduction to genetic algorithms. Complex adaptive systems. MIT Press (1998)

    Google Scholar 

  20. Mohn, F., Schübeler, D.: Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends in Genetics 25(3), 129–136 (2009)

    Article  Google Scholar 

  21. Quick, T., Nehaniv, C.L., Dautenhahn, K., Roberts, G.: Evolving Embodied Genetic Regulatory Network-Driven Control Systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 266–277. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Tél, T., Gruiz, M.: Chaotic dynamics: an introduction based on classical mechanics. Cambridge University Press (2006)

    Google Scholar 

  23. Turner, B.: Chromatin and gene regulation: mechanisms in epigenetics. Blackwell Science (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turner, A.P., Lones, M.A., Fuente, L.A., Stepney, S., Caves, L.S., Tyrrell, A.M. (2012). Using Artificial Epigenetic Regulatory Networks to Control Complex Tasks within Chaotic Systems. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds) Information Processign in Cells and Tissues. IPCAT 2012. Lecture Notes in Computer Science, vol 7223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28792-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28792-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28791-6

  • Online ISBN: 978-3-642-28792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics