Nothing Special   »   [go: up one dir, main page]

Skip to main content

Similarity Join on XML Based on k-Generation Set Distance

  • Conference paper
Web-Age Information Management (WAIM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7142))

Included in the following conference series:

  • 917 Accesses

Abstract

Similarity join is applied very widely nowadays since data items representing the same real-world objects may be different due to various conventions. Another reason for similarity join is that the efficiency of traditional methods is really low. Therefore, a method with both high efficiency and high join quality is in need. In the paper, we put forward two new edit operations (reversing and mapping) together with related algorithms concerning similarity join based on the new defined measure. In our method, computing tree edit distance is replaced by computing k-generation set distance between trees. The join process is simplified largely by applying the new method. The time complexity of our method is O(n 2 ), where n is the tree size. We have proved that our method owns some advantages over others. And it can be scaled to large data sets as well.

This research is partially supported by National Science Foundation of China under Grant No. 61003046, No. 60831160525, No. 61111130189. Key Program of the National Natural Science Foundation of China under Grant No. 60933001, National Postdoctoral Foundation of China under Grant No. 20090450126, No. 201003447, Doctoral Fund of Ministry of Education of China under Grant No. 20102302120054.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augsten, N., Bohlen, M., Gamper, J.: Approximate matching of hierarchical data using pq-grams. In: Proc. of the 31st VLDB Conferences, Trondheim, Norway, pp. 301–312 (2005)

    Google Scholar 

  2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1-3), 217–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, F., Wang, H., Hao, L., Li, J., Gao, H.: pq-hash: An Efficient Method for Approximate XML Joins. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 125–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Li, F., Wang, H., Zhang, C., Hao, L., Li, J., Gao, H.: Approximate Joins for XML Using g-String. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010. LNCS, vol. 6309, pp. 3–17. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Augsten, N., Bohlen, M.H., Gamper, J.: The pq-gram distance between ordered labeled trees. ACM Trans. Database Syst. 35(1) (2010)

    Google Scholar 

  6. Tatikonda, S., Parthasarathy, S.: Hashing Tree-Structured Data: Methods and Applications. In: ICDE (2010) (to appear)

    Google Scholar 

  7. Dulucq, S., Touzet, H.: Analysis of Tree Edit Distance Algorithms. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 83–95. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Han, Z., Wang, H., Gao, H., Li, J., Luo, J.: Clustering-Based Approximate Join Method on XML Documents. Journal of Computer Research and Development (suppl.), 81–86 (2009); ISSN:1000-1239/CN 11-1177/TP46

    Google Scholar 

  9. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. ACM SIGMOD (June 4-6, 2002)

    Google Scholar 

  10. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Integrating XML Data Sources Using Approximate Joins. ACM Transactions on Database Systems 31(1), 161–207 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Wang, H., Wang, Y., Gao, H. (2012). Similarity Join on XML Based on k-Generation Set Distance. In: Wang, L., Jiang, J., Lu, J., Hong, L., Liu, B. (eds) Web-Age Information Management. WAIM 2011. Lecture Notes in Computer Science, vol 7142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28635-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28635-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28634-6

  • Online ISBN: 978-3-642-28635-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics