Nothing Special   »   [go: up one dir, main page]

Skip to main content

The 2011 Signal Separation Evaluation Campaign (SiSEC2011): - Audio Source Separation -

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Abstract

This paper summarizes the audio part of the 2011 community-based Signal Separation Evaluation Campaign (SiSEC2011). Four speech and music datasets were contributed, including datasets recorded in noisy or dynamic environments and a subset of the SiSEC2010 datasets. The participants addressed one or more tasks out of four source separation tasks, and the results for each task were evaluated using different objective performance criteria. We provide an overview of the audio datasets, tasks and criteria. We also report the results achieved with the submitted systems, and discuss organization strategies for future campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cooke, M.P., Hershey, J., Rennie, S.: Monaural speech separation and recognition challenge. Computer Speech and Language 24, 1–15 (2010)

    Article  Google Scholar 

  2. Vincent, E., Araki, S., Theis, F.J., Nolte, G., Bofill, P., Sawada, H., Ozerov, A., Gowreesunker, B.V., Lutter, D., Duong, N.Q.K.: The Signal Separation Evaluation Campaign (2007–2010): Achievements and remaining challenges. Signal Processing (to appear)

    Google Scholar 

  3. Christensen, H., Barker, J., Ma, N., Green, P.: The CHiME corpus: a resource and a challenge for computational hearing in multisource environments. In: Proc. Interspeech, pp. 1918–1921 (2010)

    Google Scholar 

  4. Vincent, E., Gribonval, R., Plumbley, M.D.: Oracle estimators for the benchmarking of source separation algorithms. Signal Processing 87(8), 1933–1950 (2007)

    Article  MATH  Google Scholar 

  5. Wang, D.L.: On ideal binary mask as the computational goal of auditory scene analysis. In: Speech Separation by Humans and Machines. Springer, Heidelberg (2005)

    Google Scholar 

  6. Araki, S., Ozerov, A., Gowreesunker, V., Sawada, H., Theis, F., Nolte, G., Lutter, D., Duong, N.Q.K.: The 2010 Signal Separation Evaluation Campaign (SiSEC2010): Audio Source Separation. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 114–122. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Vincent, E., Gribonval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. on Audio, Speech and Language Processing 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  8. Emiya, V., Vincent, E., Harlander, N., Hohmann, V.: Subjective and objective quality assessment of audio source separation. IEEE Trans. on Audio, Speech and Language Processing 19(7), 2046–2057 (2011)

    Article  Google Scholar 

  9. Vincent, E.: Improved Perceptual Metrics for the Evaluation of Audio Source Separation. In: Theis, F., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 430–437. Springer, Heidelberg (2012)

    Google Scholar 

  10. Ozerov, A., Vincent, E., Bimbot, F.: A general flexible framework for the handling of prior information in audio source separation. IEEE Trans. on Audio, Speech and Language Processing PP(99), 1 (2011)

    Google Scholar 

  11. Makkiabadi, B., Sanei, S., Marshall, D.: A k-subspace based tensor factorization approach for under-determined blind identification. In: Proc. ASILOMAR 2010 (2010)

    Google Scholar 

  12. Hirasawa, Y., Yasuraoka, N., Takahashi, T., Ogata, T., Okuno, H.G.: A GMM Sound Source Model for Blind Speech Separation in Under-determined Conditions. In: Yeredor, A., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 446–453. Springer, Heidelberg (2012)

    Google Scholar 

  13. Iso, K., Araki, S., Makino, S., Nakatani, T., Sawada, H., Yamada, T., Nakamura, A.: Blind source separation of mixed speech in a high reverberation environment. In: Proc. HSCMA 2011, pp. 36–39 (2011)

    Google Scholar 

  14. Cho, J., Choi, J., Yoo, C.D.: Underdetermined convolutive blind source separation using a novel mixing matrix estimation and MMSE-based source estimation. In: Proc. MLSP 2011 (2011)

    Google Scholar 

  15. Nesta, F., Omologo, M.: Convolutive Underdetermined Source Separation through Weighted Interleaved ICA and Spatio-temporal Source Correlation. In: Yeredor, A., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 222–230. Springer, Heidelberg (2012)

    Google Scholar 

  16. Sawada, H., Araki, S., Makino, S.: A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures. In: Proc. WASPAA, pp. 139–142 (2007)

    Google Scholar 

  17. Málek, J., Koldovský, Z., Tichavský, P.: Semi-blind Source Separation Based on ICA and Overlapped Speech Detection. In: Yeredor, A., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 462–469. Springer, Heidelberg (2012)

    Google Scholar 

  18. Nesta, F., Omologo, M.: Generalized state coherence transform for multidimensional TDOA estimation of multiple sources. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 246–260 (2012)

    Article  Google Scholar 

  19. Loesch, B., Yang, B.: Blind Source Separation Based on Time-Frequency Sparseness in the Presence of Spatial Aliasing. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 1–8. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Loesch, B., Yang, B.: Adaptive Segmentation and Separation of Determined Convolutive Mixtures under Dynamic Conditions. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 41–48. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Loesch, B., Nesta, F., Yang, B.: On the robustness of the multidimensional state coherence transform for solving the permutation problem of frequency-domain ICA. In: Proc. ICASSP, pp. 225–228 (2010)

    Google Scholar 

  22. Durrieu, J.-L., David, B., Richard, G.: A musically motivated mid-level representation for pitch estimation and musical audio source separation. IEEE Journal of Selected Topics on Signal Processing 5(6), 1180–1191 (2011)

    Article  Google Scholar 

  23. Durrieu, J.-L., Thiran, J.-P.: Musical Audio Source Separation Based on User-Selected F0 Track. In: Yeredor, A., et al. (eds.) LVA/ICA 2012. LNCS, vol. 7191, pp. 438–445. Springer, Heidelberg (2012)

    Google Scholar 

  24. Cano, E., Dittmar, C., Schuller, G.: Interaction of phase, magnitude and location of harmonic components in the perceived quality of extracted solo signals. In: Proc. AES (2011)

    Google Scholar 

  25. Spiertz, M., Gnann, V.: Note clustering based on 2D source-filter modeling for underdetermined blind source separation. In: Proc. AES (2011)

    Google Scholar 

  26. Marxer, R., Janer, J.: A Tikhonov regularization method for spectrum decomposition in low latency audio source separation. In: Proc. ICASSP 2012 (to appear, 2012)

    Google Scholar 

  27. Sawada, H., Kameoka, H., Araki, S., Ueda, N.: Efficient algorithms for multichannel extensions of Itakura-Saito nonnegative matrix factorization. In: Proc. ICASSP 2012 (to appear, 2012)

    Google Scholar 

  28. Mustiere, F., Bolic, M., Bouchard, M.: Real-world particle filtering-based speech enhancement. In: Proc. CIP, pp. 75–80 (2010)

    Google Scholar 

  29. Nesta, F., Matassoni, M.: Robust automatic speech recognition through on-line semi-blind source extraction. In: Proc. CHIME (2011)

    Google Scholar 

  30. Blandin, C., Ozerov, A., Vincent, E.: Multi-source TDOA estimation in reverberant audio using angular spectra and clustering. Signal Processing (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Araki, S. et al. (2012). The 2011 Signal Separation Evaluation Campaign (SiSEC2011): - Audio Source Separation -. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics