Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Latently Constrained Mixture Model for Audio Source Separation and Localization

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

We present a method for audio source separation and localization from binaural recordings. The method combines a new generative probabilistic model with time-frequency masking. We suggest that device-dependent relationships between point-source positions and interaural spectral cues may be learnt in order to constrain a mixture model. This allows to capture subtle separation and localization features embedded in the auditory data. We illustrate our method with data composed of two and three mixed speech signals in the presence of reverberations. Using standard evaluation metrics, we compare our method with a recent binaural-based source separation-localization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Comp. Stat. & Data An. 14(3), 315–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mandel, M.I., Weiss, R.J., Ellis, D.P.W.: Model-based expectation-maximization source separation and localization. IEEE TASLP 18, 382–394 (2010)

    Google Scholar 

  3. Mouba, J., Marchand, S.: A source localization/separation/respatialization system based on unsupervised classification of interaural cues. In: Proceedings of the International Conference on Digital Audio Effects, pp. 233–238 (2006)

    Google Scholar 

  4. Nix, J., Hohmann, V.: Sound source localization in real sound fields based on empirical statistics of interaural parameters. JASA 119(1), 463–479 (2006)

    Article  Google Scholar 

  5. Roman, N., Wang, D., Brown, G.J.: Speech segregation based on sound localization. JASA 114(4), 2236–2252 (2003)

    Article  Google Scholar 

  6. Vincent, E., Gribonval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE TASLP 14(4), 1462–1469 (2006)

    Google Scholar 

  7. Viste, H., Evangelista, G.: On the use of spatial cues to improve binaural source separation. In: Proc. Int. Conf. on Digital Audio Effects, pp. 209–213 (2003)

    Google Scholar 

  8. Yılmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing 52, 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deleforge, A., Horaud, R. (2012). A Latently Constrained Mixture Model for Audio Source Separation and Localization. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics