Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Uniqueness Results in Sparse Convolutive Source Separation

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

  • 2494 Accesses

Abstract

The fundamental problems in the traditional frequency domain approaches to convolutive blind source separation are 1) arbitrary permutations and 2) arbitrary scaling in each frequency bin of the estimated filters or sources. These ambiguities are corrected by taking into account some specific properties of the filters or sources, or both. This paper focusses on the filter permutation problem, assuming the absence of the scaling ambiguity, investigating the use of temporal sparsity of the filters as a property to aid permutation correction. Theoretical and experimental results bring out the potential as well as the extent to which sparsity can be used as a hypothesis to formulate a well posed permutation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press (2010)

    Google Scholar 

  2. Pedersen, M.S., Larsen, J., Kjems, U., Parra, L.C.: A survey of convolutive blind source separation methods. In: Multichannel Speech Processing Handbook, Citeseer

    Google Scholar 

  3. Donoho, D.L., Stark, P.B.: Uncertainty Principles and Signal Recovery. SIAM Journal on Applied Mathematics 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elad, M., Bruckstein, A.M.: A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. on Information Theory 48(9), 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tao, T.: An Uncertainty Principle for Cyclic Groups of Prime Order. Mathematical Research Letters 12, 121–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hall, P.: On Representatives of Subsets. J. London Math. Soc. 10(1), 26–30 (1935)

    MATH  Google Scholar 

  7. Tropp, J.: On the Linear Independence of Spikes and Sines. Journal of Fourier Analysis and Applications 14(5), 838–858 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benichoux, A., Sudhakar, P., Bimbot, F., Gribonval, R. (2012). Some Uniqueness Results in Sparse Convolutive Source Separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics