Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simultaneous Diagonalization of Skew-Symmetric Matrices in the Symplectic Group

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

  • 2575 Accesses

Abstract

Many source separation algorithms rely on the approximate simultaneous diagonalization of matrices. While there exist very efficient algorithms for symmetric matrices, the skew-symmetric case turned out to be more difficult. Here we show how the often used whitening/rotation approach for symmetric matrices can be translated to this case. While the former leads to orthogonal transformations in Euclidean space, the latter leads to symplectic transformations in symplectic space. It is demonstrated that the resulting algorithm is more stable than a naïve diagonalization that does not respect the symplectic structure of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Trans. on Signal Processing 45(2), 434–444 (1997)

    Article  Google Scholar 

  2. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings-F 140, 362–370 (1993)

    Google Scholar 

  3. Meinecke, F.C.: Synchronized? Identifying interactions from superimposed signals. PhD Thesis, TU Berlin (2011)

    Google Scholar 

  4. Meinecke, F.C., Ziehe, A., Nolte, G., Müller, K.-R.: Interacting source analysis - identifying interactions in mixed and noisy complex systems. In: Proc. Int. ICA Research Network 2006, Liverpool, pp. 72–79 (2006)

    Google Scholar 

  5. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from eeg data using the imaginary part of coherency. Clinical Neurophysiology 115(10), 2292–2307 (2004)

    Article  Google Scholar 

  6. Nolte, G., Meinecke, F.C., Ziehe, A., Müller, K.-R.: Identifying interactions in mixed and noisy complex systems. Physical Review E 73 (2006)

    Google Scholar 

  7. Plumbley, M.D.: Geometrical methods for non-negative ica: Manifolds, lie groups and toral subalgebras. Neurocomputing 67, 161–197 (2005); Geometrical Methods in Neural Networks and Learning

    Article  Google Scholar 

  8. Ziehe, A., Müller, K.-R.: TDSEP – an efficient algorithm for blind separation using time structure. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) Proceedings of the 8th International Conference on Artificial Neural Networks, ICANN 1998. Perspectives in Neural Computing, pp. 675–680. Springer, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meinecke, F.C. (2012). Simultaneous Diagonalization of Skew-Symmetric Matrices in the Symplectic Group. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics