Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algebraic Solutions to Complex Blind Source Separation

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

The linear BSS problem can be solved under certain conditions via a joint diagonalization approach of only two matrices. Algebraic solutions, i.e. solutions that only involve eigenvalue decompositions or singular value decompositions, are of particular interest as efficient eigensolvers exist. Success of these methods depends significantly on particular properties of the sources, such as non-stationarity, non-whiteness, non-Gaussianity, and non-circularity. In this work, we propose alternative algebraic solutions to solve the complex BSS problem, which generalize the existing approaches. For example, applicability of SUT is limited to the positive definiteness of the covariance matrix, whereas our approach allows to exploit alternative information, such as autocorrelation and pseudo-autocorrelation, to solve the complex BBS problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  2. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press Inc. (2010)

    Google Scholar 

  3. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  4. Parra, L., Sajda, P.: Blind source separation via generalized eigenvalue decomposition. The Journal of Machine Learning Research 4(7-8), 1261–1269 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Shen, H., Kleinsteuber, M.: Complex Blind Source Separation via Simultaneous Strong Uncorrelating Transform. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 287–294. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Eriksson, J., Koivunen, V.: Complex-valued ICA using second order statistics. In: Proceedings of the 14th IEEE International Workshop on MLSP, pp. 183–191 (2004)

    Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    Book  MATH  Google Scholar 

  8. Kleinsteuber, M.: A sort-Jacobi algorithm for semisimple Lie algebras. Linear Algebra and its Applications 430(1), 155–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tong, L., Liu, R.W., Soon, V.C., Huang, Y.F.: Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits and Systems 38(5), 499–509 (1991)

    Article  MATH  Google Scholar 

  10. Pham, D.T., Cardoso, J.F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Transactions on Signal Processing 49(9), 1837–1848 (2001)

    Article  MathSciNet  Google Scholar 

  11. Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  12. De Lathauwer, L., de Moor, B.: On the blind separation of non-circular sources. In: Proceedings of the 11th EUSIPCO, pp. 99–102 (2002)

    Google Scholar 

  13. Li, X.L., Adalı, T.: Blind separation of noncircular correlated sources using Gaussian entropy rate. IEEE Transactions on Signal Processing 59(6), 2969–2975 (2011)

    Article  MathSciNet  Google Scholar 

  14. Benedetti, R., Cragnolini, P.: On simultaneous diagonalization of one Hermitian and one symmetric form. Linear Algebra and its Applications 57, 215–226 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. The MIT Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, H., Kleinsteuber, M. (2012). Algebraic Solutions to Complex Blind Source Separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics