Nothing Special   »   [go: up one dir, main page]

Skip to main content

FluidTracks

Combining Nonlinear Image Registration and Active Contours for Cell Tracking

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Abstract

Continuous analysis of multi-cellular systems at the single cell level in space and time is one of the fundamental tools in cell biology and experimental medicine to study the mechanisms underlying tissue formation, regeneration and disease progression. We present an approach to cell tracking using nonlinear image registration and level set segmentation that can handle different cell densities, occlusions and cell divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Megason SG, Fraser SE. Imaging in systems biology. Cell. 2007;130(5):784–95.

    Article  Google Scholar 

  2. Schroeder T. Long-term single-cell imaging of mammalian stem cells. Nat Methods. 2011;8:S 30–5.

    Article  Google Scholar 

  3. Acton ST, Ray N. Biomedical image analysis: tracking. Synthesis Lectures on Image, Video, and Multimedia Processing. 2006;2(1):1–152.

    Article  Google Scholar 

  4. Meijering E, Dzyubachyk O, Smal I, et al. Tracking in cell and developmental biology. Semin Cell Dev Biol. 2009;20(8):894–902.

    Article  Google Scholar 

  5. Kanade T, Yin Z, Bise R, et al. Cell image analysis: algorithms, system and applications. In: Proc IEEE WACV; 2011. p. 374–81.

    Google Scholar 

  6. Hand AJ, Sun T, Barber DC, et al. Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration. J Microsc. 2009;234(1):62–79.

    Article  MathSciNet  Google Scholar 

  7. Tokuhisa S, Kaneko K. The time series image snalysis of the HeLa cell using viscous fluid registration. In: Proc ICCSA. Springer; 2010. p. 189–200.

    Google Scholar 

  8. Bro-Nielsen M, Gramkow C. Fast fluid registration of medical images. In: Proc VBC; 1996. p. 267–76.

    Google Scholar 

  9. Fischer B. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 2004;380:107–24.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuska JP, Scheibe P, Braumann UD. Fast fluid extensions for image registration algorithms. In: Proc IEEE ICIP; 2008. p. 2408–11.

    Google Scholar 

  11. Chan TF, Vese L. Active contours without edges. IEEE Trans Image Proc. 2001;10(2):266–77.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Scherf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherf, N. et al. (2012). FluidTracks. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_12

Download citation

Publish with us

Policies and ethics