Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Nearest Neighbor Classification by Elimination of Noisy Irrelevant Features

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7197))

Included in the following conference series:

Abstract

This paper introduces the use of GA with a novel fitness function to eliminate noisy and irrelevant features. Fitness function of GA is based on the Area Under the receiver operating characteristics Curve (AUC). The aim of this feature selection is to improve the performance of k-NN algorithm. Experimental results show that the proposed method can substantially improve the classification performance of k-NN algorithm in comparison with the other classifiers (in the realm of feature selection) such as C4.5, SVM, and Relief. Furthermore,this method is able to eliminate the noisy irrelevant features from the synthetic data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D.W., Bankert, R.L.: Feature Selection for Case-based Classification of Cloud Types: An Empirical Comparison, pp. 106–112. AAAI Press (1994)

    Google Scholar 

  2. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, pp. 37–45. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  3. Blake, L., Merz, C.J.: Uci repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: ICML 1998, pp. 82–90 (1998)

    Google Scholar 

  5. Castellano, G., Fanelli, A.M., Pelillo, M.: An iterative pruning algorithm for feedforward neural networks. IEEE Transactions on Neural Networks 8(3), 519–531 (1997)

    Article  Google Scholar 

  6. Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: ICML 2001, pp. 74–81 (2001)

    Google Scholar 

  7. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, vol. 7. Wiley (1973)

    Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 12. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  9. Farzanyar, Z., Kangavari, M.R., Hashemi, S.: Effect of Similar Behaving Attributes in Mining of Fuzzy Association Rules in the Large Databases. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006, Part I. LNCS, vol. 3980, pp. 1100–1109. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. ReCALL 31(HPL-2003-4), 1–38 (2004)

    Google Scholar 

  11. Frohlich, H., Chapelle, O., Scholkopf, B.: Feature selection for support vector machines by means of genetic algorithms. In: Proc. 15th IEEE Int. Conf. on Tools with AI, pp. 142–148 (December 2003)

    Google Scholar 

  12. Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: ICML 2010, pp. 359–366 (2010)

    Google Scholar 

  13. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. Ph.D. thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand (April 1999)

    Google Scholar 

  14. Hashemi, S., Kangavari, M.R., Yang, Y.: Class specific fuzzy decision trees for mining high speed data streams. Fundam. Inform. 88(1-2), 135–160 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Lanzi, P.L.: Fast feature selection with genetic algorithms: a filter approach (1997)

    Google Scholar 

  16. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17(4), 491–502 (2005)

    Article  Google Scholar 

  17. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Transactions on Information Theory 9(1), 11–17 (1963)

    Article  Google Scholar 

  18. Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics a Publication of the IEEE Systems Man and Cybernetics Society 36(1), 106–117 (2006)

    Article  Google Scholar 

  19. Pudil, P., Novovicová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)

    Article  Google Scholar 

  20. Song, L., Smola, A.J., Gretton, A., Borgwardt, K.M., Bedo, J.: Supervised feature selection via dependence estimation. CoRR, p. 1 (2007)

    Google Scholar 

  21. Vivencio, D., Hruschka, E., Nicoletti, M., dos Santos, E., Galvao, S.: Feature-weighted k-nearest neighbor classifier. In: FOCI 2007, pp. 481–486 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zomorodian, M.J., Adeli, A., Sinaee, M., Hashemi, S. (2012). Improving Nearest Neighbor Classification by Elimination of Noisy Irrelevant Features. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science(), vol 7197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28490-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28490-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28489-2

  • Online ISBN: 978-3-642-28490-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics