Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Discriminative Distance Learning–Based CBIR Framework for Characterization of Indeterminate Liver Lesions

  • Conference paper
Medical Content-Based Retrieval for Clinical Decision Support (MCBR-CDS 2011)

Abstract

In this paper we propose a novel learning–based CBIR method for fast content–based retrieval of similar 3D images based on the intrinsic Random Forest (RF) similarity. Furthermore, we allow the combination of flexible user–defined semantics (in the form of retrieval contexts and high–level concepts) and appearance–based (low–level) features in order to yield search results that are both meaningful to the user and relevant in the given clinical case. Due to the complexity and clinical relevance of the domain, we have chosen to apply the framework to the retrieval of similar 3D CT hepatic pathologies, where search results based solely on similarity of low–level features would be rarely clinically meaningful. The impact of high–level concepts on the quality and relevance of the retrieval results has been measured and is discussed for three different set–ups. A comparison study with the commonly used canonical Euclidean distance is presented and discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lencioni, R., Cioni, D., Bartolozzi, C., Baert, A.L.: Focal Liver Lesions: Detection, Characterization, Ablation. Springer, Heidelberg (2005)

    Book  Google Scholar 

  2. Akgül, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content–based image retrieval: current status and future directions. Journal of Digital Imaging (2010)

    Google Scholar 

  3. Napel, S.A., Beaulieu, C.F., Rodriguez, C., Cui, J., Xu, J., Gupta, A., Korenblum, D., Greenspan, H., Ma, Y., Rubin, D.L.: Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology 256(1) (2010)

    Google Scholar 

  4. Spencer, J.A.: Indeterminate lesions in cancer imaging. Clinical Radiology 63, 843–852 (2008)

    Article  Google Scholar 

  5. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content–based image retrieval at the end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence 22(12) (2000)

    Google Scholar 

  6. Segal, E., Sirlin, C.B., Ooi, C., Adler, A.S., Gollub, J., Chen, X., Chan, B.K., Matchuk, G.R., Barry, C.T., Chang, H.Y., Kuo, M.D.: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology (2007)

    Google Scholar 

  7. Seifert, S., Thoma, M., Stegmaier, F., Hammon, M., Kramer, M., Huber, M., Kriegel, H.-P., Cavallaro, A., Comaniciu, D.: Combined semantic and similarity search in medical image databases 7967, 7967-2 (2011)

    Google Scholar 

  8. Pękalska, E.z., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or Non-Metric Measures Can be Informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Tsymbal, A., Huber, M., Zhou, S.K.: Learning discriminative distance functions for case retrieval and decision support. Transactions on CBR 3(1), 1–16 (2010)

    Google Scholar 

  10. Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A., Horvath, S.: Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol. 18(4), 547–557 (2005)

    Article  Google Scholar 

  11. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. Computational and Graphical Statistics 15(1), 118–138 (2006)

    Article  Google Scholar 

  12. Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., Falkowski, M.J.: Nearest neighbour imputation of species-level, plot-scale forest structure attributes from lidar data. Remote Sensing of Environment 112(5), 2232–2245 (2008)

    Article  Google Scholar 

  13. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein–protein interaction prediction from multiple sources. In: Prooceedings of Pacific Symposium on Biocomputing (2005)

    Google Scholar 

  14. Vitanovski, D., Tsymbal, A., Ionasec, R., Georgescu, B., Zhou, S.K., Comaniciu, D.: Learning distance function for regression-based 4d pulmonary trunk model reconstruction estimated from sparse MRI data. In: Proc. SPIE Medical Imaging (2011)

    Google Scholar 

  15. Breiman, L.: Random forests. Machine Learning, 5–32 (2001)

    Google Scholar 

  16. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: Online random forests. In: 3rd IEEE ICCV Workshop on Online Computer Vision (2009)

    Google Scholar 

  17. Oza, N., Russell, S.: Experimental comparisons of online and batch versions of bagging and boosting, pp. 359–364 (2001)

    Google Scholar 

  18. Pfahringer, B., Holmes, G., Kirkby, R.: New options for Hoeffding trees. In: Australian Conference on AI (2007)

    Google Scholar 

  19. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8 (1962)

    Google Scholar 

  20. Pejnovic, P., Buturovic, L., Stojiljkovic, Z.: Object recognition by invariants. In: Proceedings of Int. Conf. on Pattern Recognition (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, M.J. et al. (2012). A Discriminative Distance Learning–Based CBIR Framework for Characterization of Indeterminate Liver Lesions. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2011. Lecture Notes in Computer Science, vol 7075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28460-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28460-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28459-5

  • Online ISBN: 978-3-642-28460-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics