Abstract
The maximum number of minimal dominating sets that a graph on n vertices can have is known to be at most 1.7159n. This upper bound might not be tight, since no examples of graphs with 1.5705n or more minimal dominating sets are known. For several classes of graphs, we substantially improve the upper bound on the maximum number of minimal dominating sets in graphs on n vertices. In some cases, we provide examples of graphs whose number of minimal dominating sets exactly matches the proved upper bound for that class, thereby showing that these bounds are tight. For all considered graph classes, the upper bound proofs are constructive and can easily be transformed into algorithms enumerating all minimal dominating sets of the input graph.
This work has been supported by the Research Council of Norway (SCOPE 197548/F20) and ANR Blanc AGAPE (ANR-09-BLAN-0159-03).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algor. Appl. 7(2), 131–140 (2003)
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)
Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1) (2008)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer, Heidelberg (2010)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Proceedings of STACS 2010, pp. 383–394 (2010)
Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 267–277. Springer, Heidelberg (2010)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57 (2004)
Haynes, T.W., Hedetniemi, S.T. (eds.): Domination in graphs. Marcel Dekker Inc., New York (1998)
Laskar, R.C., Pfaff, J.: Domination and irredundance in split graphs. Technical Report 430, Clemson University (1983)
Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dominating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)
Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph families. Inform. Proc. Lett. 49(1), 51–56 (1994)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Inform. Proc. Lett. 5(3), 66–67 (1976)
Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Couturier, JF., Heggernes, P., van’t Hof, P., Kratsch, D. (2012). Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-27660-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27659-0
Online ISBN: 978-3-642-27660-6
eBook Packages: Computer ScienceComputer Science (R0)