Nothing Special   »   [go: up one dir, main page]

Skip to main content

Random Semicomputable Reals Revisited

  • Chapter
Computation, Physics and Beyond (WTCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Included in the following conference series:

Abstract

The aim of this expository paper is to present a nice series of results, obtained in the papers of Chaitin [3], Solovay [8], Calude et al. [2], Ku\(\mathrm{\check{c}}\)era and Slaman [5]. This joint effort led to a full characterization of lower semicomputable random reals, both as those that can be expressed as a “Chaitin Omega” and those that are maximal for the Solovay reducibility. The original proofs were somewhat involved; in this paper, we present these results in an elementary way, in particular requiring only basic knowledge of algorithmic randomness. We add also several simple observations relating lower semicomputable random reals and busy beaver functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bienvenu, L., Downey, R.: Kolmogorov complexity and Solovay functions. In: Symposium on Theoretical Aspects of Computer Science (STACS 2009). Dagstuhl Seminar Proceedings, vol. 09001, pp. 147–158. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/1810

    Google Scholar 

  2. Calude, C., Hertling, P., Khoussainov, B., Wang, Y.: Recursively Enumerable Reals and Chaitin Omega Numbers. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 596–606. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Chaitin, G.: Information-theoretical characterizations of recursive infinte strings. Theoretical Computer Science 2, 45–48 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hölzl, R., Kräling, T., Merkle, W.: Time-Bounded Kolmogorov Complexity and Solovay Functions. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 392–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal on Computing 31, 199–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Levin, L.: Forbidden information. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), p. 761 (2002)

    Google Scholar 

  7. Shen, A.: Algorithmic Information theory and Kolmogorov complexity. Technical report TR2000-034. Technical report, Uppsala University (2000)

    Google Scholar 

  8. Solovay, R.: Draft of a paper (or series of papers) on Chaitin’s work. Unpublished notes, 215 pages (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bienvenu, L., Shen, A. (2012). Random Semicomputable Reals Revisited. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics