Nothing Special   »   [go: up one dir, main page]

Skip to main content

First-Passage-Time for Gauss-Diffusion Processes via Integrated Analytical, Simulation and Numerical Methods

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6927))

Included in the following conference series:

  • 1710 Accesses

Introduction

In the study of the dynamics of a system subject to stochastic evolution, the attention is usually focused on the laws regulating the time course of the distribution function (df), or the transition probability density function (pdf), by which one can express the probability for the system to occupy at given times any preassigned configuration of the state space. In other words, it is customary to pay attention to the time evolution of the considered system through the state space starting either from a uniquely preassigned initial state or from a state whose probability distribution is assumed to be given.

Work partially supported by MIUR (PRIN 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrahams, J.: A survey of recent progress on level-crossing problems for random processes. In: Blake, I.F., Poor, H.V. (eds.) Communications and Networks - A Survey of Recent Advances, pp. 6–25. Springer, New York (1986)

    Google Scholar 

  2. Blake, I., Lindsey, W.: Level-Crossing Problems for Random Processes. IEEE Transactions Information Theory., IT 19, 295–315 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buonocore, A., Nobile, A.G., Ricciardi, L.M.: A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19, 784–800 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buonocore, A., Caputo, L., Pirozzi, E., Ricciardi, L.M.: The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model. Methodol. Comput. Appl. Probab. 13, 29–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daniels, H.: The minimum of a stationary Markov process superimposed on a U-shaped trend. J. Appl. Prob. 6, 399–408 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Nardo, E., Nobile, A.G., Pirozzi, E., Ricciardi, L.M.: A computational approach to first-passage-time problems for Gauss-Markov processes. Adv. in Appl. Probab. 33(2), 453–482 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeanblanc, M., Rutkowski, M.: Modelling of default risk: an overview. In: Moderne Mathematical Finance: Theory and Practice, pp. 171–269. Higher Education Press, Beijing (2000)

    Google Scholar 

  8. Lo, C.F., Hui, C.H.: Computing the first passage time density of a time-dependent Ornstein-Uhlenbeck process to a moving boundary. Applied Mathematics Letters 19, 1399–1405 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Madec, Y., Japhet, C.: First passage time problem for drifted Ornstein-Uhlenbeck process. Math. Biosci. 189, 131–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nobile, A.G., Ricciardi, L.M., Sacerdote, L.: Exponential trends of Ornstein-Uhlenbeck first-passage-time densities. J. Appl. Prob. 22, 360–369 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Redner, S.: A guide to First-Passage Processes. Cambridge University Press, Cambridge (2001), doi:10.2277/0521652480

    Book  MATH  Google Scholar 

  12. Taillefumier, T., Magnasco, M.O.: A Fast Algorithm for the First-Passage Times of Gauss-Markov Processes with Hölder Continuous Boundaries. J. Stat. Phys. 140, 1130–1156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tuckwell, H.C.: Introduction to theoretical neurobiology (vol. 2): nonlinear and stochastic theories. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buonocore, A., Caputo, L., Pirozzi, E. (2012). First-Passage-Time for Gauss-Diffusion Processes via Integrated Analytical, Simulation and Numerical Methods. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27549-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27548-7

  • Online ISBN: 978-3-642-27549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics