Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incremental Kernel Fuzzy c-Means

  • Conference paper
Computational Intelligence (IJCCI 2010)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 399))

Included in the following conference series:

Abstract

The size of everyday data sets is outpacing the capability of computational hardware to analyze these data sets. Social networking and mobile computing alone are producing data sets that are growing by terabytes every day. Because these data often cannot be loaded into a computer’s working memory, most literal algorithms (algorithms that require access to the full data set) cannot be used. One type of pattern recognition and data mining method that is used to analyze databases is clustering; thus, clustering algorithms that can be used on large data sets are important and useful. We focus on a specific type of clustering: kernelized fuzzy c-means (KFCM). The literal KFCM algorithm has a memory requirement of O(n 2), where n is the number objects in the data set. Thus, even data sets that have nearly 1,000,000 objects require terabytes of working memory—infeasible for most computers. One way to attack this problem is by using incremental algorithms; these algorithms sequentially process chunks or samples of the data, combining the results from each chunk. Here we propose three new incremental KFCM algorithms: rseKFCM, spKFCM, and oKFCM. We assess the performance of these algorithms by, first, comparing their clustering results to that of the literal KFCM and, second, by showing that these algorithms can produce reasonable partitions of large data sets. In summary, the rseKFCM is the most efficient of the three, exhibiting significant speedup at low sampling rates. The oKFCM algorithm seems to produce the most accurate approximation of KFCM, but at a cost of low efficiency. Our recommendation is to use rseKFCM at the highest sample rate allowable for your computational and problem needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belabbas, M., Wolfe, P.: Spectral methods in machine learning and new strategies for very large datasets. Proc. National Academy of Sciences 106(2), 369–374 (2009)

    Article  Google Scholar 

  2. Bezdek, J.: A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 2, 1–8 (1980)

    Article  MATH  Google Scholar 

  3. Bezdek, J.: Pattern Recognition With Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  4. Bezdek, J., Hathaway, R.: Convergence of alternating optmization. Nueral, Parallel, and Scientific Computations 11(4), 351–368 (2003)

    MATH  Google Scholar 

  5. Bezdek, J., Keller, J., Krishnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Norwell (1999)

    Book  MATH  Google Scholar 

  6. Bo, W., Nevatia, R.: Cluster boosted tree classifier for multi-view, multi-pose object detection. In: Proc. ICCV (October 2007)

    Google Scholar 

  7. Cannon, R., Dave, J., Bezdek, J.: Efficient implementation of the fuzzy c-means algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 248–255 (1986)

    Article  MATH  Google Scholar 

  8. Cheng, T., Goldgof, D., Hall, L.: Fast clustering with application to fuzzy rule generation. In: Proc. IEEE Int. Conf. Fuzzy Systems, Tokyo, Japan, pp. 2289–2295 (1995)

    Google Scholar 

  9. Chitta, R., Jin, R., Havens, T., Jain, A.: Approximate kernel k-means: Solution to large scale kernel clustering. In: Proc. ACM SIGKDD (2011)

    Google Scholar 

  10. Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means, spectral clustering, and normalized cuts. In: Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery Data Mining, pp. 551–556 (August 2004)

    Google Scholar 

  11. Drineas, P., Mahoney, M.: On the nystrom method for appoximating a gram matrix for improved kernel-based learning. The J. of Machine Learning Research 6, 2153–2175 (2005)

    MATH  Google Scholar 

  12. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience (October 2000)

    Google Scholar 

  13. Eschrich, S., Ke, J., Hall, L., Goldgof, D.: Fast accurate fuzzy clustering through data reduction. IEEE Trans. Fuzzy Systems 11, 262–269 (2003)

    Article  Google Scholar 

  14. Frigui, H.: Simultaneous Clustering and Feature Discrimination with Applications. In: Advances in Fuzzy Clustering and Feature Discrimination with Applications, pp. 285–312. John Wiley and Sons (2007)

    Google Scholar 

  15. Hartigan, J.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  16. Hathaway, R., Bezdek, J.: NERF c-MEANS: Non-euclidean relational fuzzy clustering. Pattern Recognition 27, 429–437 (1994)

    Article  Google Scholar 

  17. Hathaway, R., Bezdek, J.: Extending fuzzy and probabilistic clustering to very large data sets. Computational Statistics and Data Analysis 51, 215–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hathaway, R., Bezdek, J., Tucker, W.: An improved convergence theory for the fuzzy isodata clustering algorithms. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp. 123–132. CRC Press, Boca Raton (1987)

    Google Scholar 

  19. Hathaway, R., Davenport, J., Bezdek, J.: Relational duals of the c-means clustering algorithms. Pattern Recognition 22(2), 205–212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hathaway, R., Huband, J., Bezdek, J.: A kernelized non-euclidean relational fuzzy c-means algorithm. In: Proc. IEEE Int. Conf. Fuzzy Systems, pp. 414–419 (2005)

    Google Scholar 

  21. Havens, T., Chitta, R., Jain, A., Jin, R.: Speedup of fuzzy and possibilistic c-means for large-scale clustering. In: Proc. IEEE Int. Conf. Fuzzy Systems, Taipei, Taiwan (2011)

    Google Scholar 

  22. Hore, P., Hall, L., Goldgof, D.: Single pass fuzzy c means. In: Proc. IEEE Int. Conf. Fuzzy Systems, London, England, pp. 1–7 (2007)

    Google Scholar 

  23. Hore, P., Hall, L., Goldgof, D., Gu, Y., Maudsley, A.: A scalable framework for segmenting magentic resonance images. J. Signal Process. Syst. 54(1-3), 183–203 (2009)

    Article  Google Scholar 

  24. Huber, P.: Massive Data Sets Workshop: The Morning After. In: Massive Data Sets, pp. 169–184. National Academy Press (1997)

    Google Scholar 

  25. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2, 193–218 (1985)

    Article  MATH  Google Scholar 

  26. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  27. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  28. Johnson, S.: Hierarchical clustering schemes. Psychometrika 2, 241–254 (1967)

    Article  MATH  Google Scholar 

  29. Khan, S., Situ, G., Decker, K., Schmidt, C.: Go Figure: Automated Gene Ontology annotation. Bioinf. 19(18), 2484–2485 (2003)

    Google Scholar 

  30. Kolen, J., Hutcheson, T.: Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Systems 10, 263–267 (2002)

    Article  Google Scholar 

  31. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy Sys. 1(2) (May 1993)

    Google Scholar 

  32. Kumar, S., Mohri, M., Talwalkar, A.: Sampling techniques for the nystrom method. In: Proc. Conf. Artificial Intelligence and Statistics, pp. 304–311 (2009)

    Google Scholar 

  33. Lloyd, S.: Least square quantization in pcm. Tech. rep., Bell Telephone Laboratories (1957)

    Google Scholar 

  34. Lloyd, S.: Least square quantization in pcm. IEEE Trans. Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. Math. Stat. and Prob., pp. 281–297. University of California Press (1967)

    Google Scholar 

  36. Pal, N., Bezdek, J.: Complexity reduction for “large image” processing. IEEE Trans. Systems, Man, and Cybernetics B (32), 598–611 (2002)

    Article  Google Scholar 

  37. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proc. KDDM, pp. 23–32 (1999)

    Google Scholar 

  38. Rand, W.: Objective criteria for the evaluation of clustering methods. J. Amer. Stat. Asooc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  39. Shankar, B.U., Pal, N.: FFCM: an effective approach for large data sets. In: Proc. Int. Conf. Fuzzy Logic, Neural Nets, and Soft Computing, Fukuoka, Japan, p. 332 (1994)

    Google Scholar 

  40. The UniProt Consotium: The universal protein resource (UniProt). Nucleic Acids Res. 35, D193–D197 (2007)

    Google Scholar 

  41. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, San Diego (2009)

    MATH  Google Scholar 

  42. Tucker, W.: Counterexamples to the convergence theorem for fuzzy isodata clustering algorithms. In: Bezdek, J. (ed.) Analysis of Fuzzy Information, vol. 3, pp. 109–122. CRC Press, Boca Raton (1987)

    Google Scholar 

  43. Wu, Z., Xie, W., Yu, J.: Fuzzy c-means clustering algorithm based on kernel method. In: Proc. Int. Conf. Computational Intelligence and Multimedia Applications, pp. 49–54 (September 2003)

    Google Scholar 

  44. Xu, R., Wunsch II, D.: Clustering. IEEE Press, Psicataway (2009)

    MATH  Google Scholar 

  45. Zhang, R., Rudnicky, A.: A large scale clustering scheme for kernel k-means. In: Proc. Int. Conf. Pattern Recognition, pp. 289–292 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Havens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Havens, T.C., Bezdek, J.C., Palaniswami, M. (2012). Incremental Kernel Fuzzy c-Means. In: Madani, K., Dourado Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2010. Studies in Computational Intelligence, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27534-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27534-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27533-3

  • Online ISBN: 978-3-642-27534-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics