Nothing Special   »   [go: up one dir, main page]

Skip to main content

Schur-Convexity of Generalized Heronian Mean

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 244))

Included in the following conference series:

  • 1584 Accesses

Abstract

In this paper, the generalized Heronian mean of n-tuple positive real valued function was defined which was the extension of the generalized Heronian mean of n-tuple positive real variable. By so-called Schur’s condition, the Schur-convexity and Schur-geometric convexity and Schur-harmonic convexity are studied for the generalized Heronian mean of n-tuple positive real valued function, and derive some results. Then the Schur-convexity also was discussed for its quotient, and as applications, a inequality is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alzer, H., Janous, W.: Solution of Problem 8*. Crux. Math. 13, 173–178 (1987)

    Google Scholar 

  2. Bullen, P.S., Mitrinvić, D.S., Vasić, P.M.: Means and Their Inequalities. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  3. Janous, W.: A Note on Generalized Heronian Means. Math. Inequal. Appl. 4, 369–375 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Shi, H.-N., Jiang, Y.-M., Jiang, W.-D.: Schur-Convexity and Schur-Geometrically Con-cavity of Gini Mean. Comput. Math. Appl. 57, 266–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guan, K.-Z., Zhu, H.T.: The Generalized Heronian Mean and Its Inequalities. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 17, 60–75 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Jia, G., Cao, J.: A New Upper Bound of the Logarithmic Mean. J. Inequal. Pure Appl. Math. 4(4) Art. 80 (2003)

    Google Scholar 

  7. Liu, Z.: Comparison of Some Means. J. Math. Res. Exp. 22(40), 583–588 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Yang, Z.-H.: ON the Homogeneous Functions With Two Parameters and Its Monotonicity. J. Inequal. Pure Appl. Math. 6(4) Art. 101 (2005)

    Google Scholar 

  9. Yang, Z.-H.: ON the Log-convexity of Two-parameter Homogeneous Functions. Math. Inequal. Appl. 10(3), 499–516 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Yang, Z.-H.: On the Monotonicity and Log-convexity of a Four-parameter Homogeneous Mean. J. Inequal. Appl. Art. ID 149286, 12 pages (2008)

    Google Scholar 

  11. Yang, Z.-H.: Some Monotonictiy Results for the Ratio of Two-parameter Symmetric Homogeneous Functions. Int. J. Math. Math. Sci. Art. ID 591382, 12 pages (2009)

    Google Scholar 

  12. Zhang, Z.-H., Wu, Y.-D.: The Generalized Heron Mean and Its Dual Form. Appl. Math. E-Notes 5, 16–23 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, Z.-H., Wu, Y.-D.: The Properties of the Generalized Heron Means and Its Dual Form. RGMIA Res. Rep. Col l. 7(2) Art. 1 (2004)

    Google Scholar 

  14. Shi, H.-N., Bencze, M., Wu, S.-H., Li, D.-M.: Schur-Convexity of Generalized Heronian Means Involving Two Parameters. Journal of Inequalities and Applications, Article ID 879273, 9 page (2008)

    Google Scholar 

  15. Guan, K.-z.: Schur-Convexity of Generalized Heron means. Journal of Heng Yang Normal University 6, 1–3 (2006)

    Google Scholar 

  16. Guan, K.-z.: Some Properties of a Generalized Hamy Symmetric Function and Its Applications. J. Math. Anal. 376, 494–505 (2011)

    Google Scholar 

  17. Wang, B.-Y.: Foundations of Majorization Inequalities. Beijing Normal Univ. Press, Beijing (1990)

    Google Scholar 

  18. Marshall, A.M., Olkin, I.: Inequalities: Theory of Majorization and Its Application. Academies Press, New York (1979)

    MATH  Google Scholar 

  19. Zhang, X.-M.: Schur-Convex Functions and Isoperimetric Inequalities. Proc. Amer. Math. Soc. 2, 461–470 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia, W.-F., Chu, Y.-M.: Schur-Convexity for a Class of Symmetric Functions and Its Applications. Journal of Inequalities and Applications, Article ID 493759, 15 pages (2009)

    Google Scholar 

  21. Shi, H.-N.: Schur-Geometric Convexity for Differences of Means. Applied Mathematics E-Notes 10, 275–284 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Ty., Ji, Ap. (2011). Schur-Convexity of Generalized Heronian Mean. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27452-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27452-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27451-0

  • Online ISBN: 978-3-642-27452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics