Nothing Special   »   [go: up one dir, main page]

Skip to main content

Face Recognition Technology and Its Real-World Application

  • Conference paper
Perception and Machine Intelligence (PerMIn 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7143))

Included in the following conference series:

Abstract

Facial image processing is a promising tool for consumer electronics and social infrastructure systems. In recent years, digital processing of a facial image can easily be performed with the spread of digital image apparatus, such as a digital camera and a mobile phone, by improvement of throughput of a computer. The performance of the face detection that is basic of the facial image processing improves drastically, and the computational cost has also decreased. It is the reason why that has expanded the application to various appliances. This paper introduces our group’s facial image processing algorithm as an example and trends of various applications using facial image processing in consumer electronics field and social infrastructure systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kanade, T.: Picture Processing by Computer Complex and Recognition of Human Faces. doctoral dissertation, Kyoto University (1973)

    Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  3. Wiskott, L., Fellous, J., Kruger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Patrern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  4. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)

    Article  Google Scholar 

  5. Sung, K., Poggio, T.: Example-based learning for viewbased human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 39–51 (1998)

    Article  Google Scholar 

  6. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision (IJCV) 57(2), 137–154 (2004) (Originally appeared in CVPR 2001)

    Article  Google Scholar 

  7. Cootes, F.T., Taylor, J.C., Cooper, H.D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61, 38–59 (1995)

    Article  Google Scholar 

  8. Cootes, F.T., Edwards, J.G., Taylor, J.C.: Active appearance models. IEEE Transactions on Patrern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  9. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Patrern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  10. Jain, A.K., Dass, S.C., Nandakumar, K.: Soft Biometric Traits for Personal Recognition Systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and Simile Classifiers for Face Verification. In: IEEE International Conference on Computer Vision (ICCV), pp. 365–372 (2009)

    Google Scholar 

  12. Mita, T., Kaneko, T., Stenger, B., Hori, O.: Discriminative Feature Co-Occurrence Selection for Object Detection. IEEE Transaction on Pattern Analysis Machine Intellgence 30(7), 1257–1269 (2008)

    Article  Google Scholar 

  13. Yamaguchi, O., Fukui, K., Maeda, K.: Face recognition using temporal image sequence. In: Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 318–323 (1998)

    Google Scholar 

  14. Fukui, K., Yamaguchi, O.: Face Recognition using multi-viewpoint patterns for robot vision. In: 11th International Symposium of Robotics Research (ISRR 2003), pp. 192–201 (2003)

    Google Scholar 

  15. Nishiyama, M., Yamaguchi, O., Fukui, K.: Face Recognition with the Multiple Constrained Mutual Subspace Method. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 71–80. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Nishiyama, M., Yamaguchi, O.: Face Recognition Using the Classified Appearance-based Quotient Image. In: Proceedings Seventh IEEE International Conference on Automatic Face and Gesture Recognition (FG 2006), pp. 49–54 (2006)

    Google Scholar 

  17. Kozakaya, T., Yamaguchi, O.: Face Recognition by Projection-based 3D Normalization and Shading Subspace Orthogonalization. In: Proceedings Seventh IEEE International Conference on Automatic Face and Gesture Recognition (FG 2006), pp. 163–168 (2006)

    Google Scholar 

  18. Fukui, K., Stenger, B., Yamaguchi, O.: A Framework for 3D Object Recognition Using the Kernel Constrained Mutual Subspace Method. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 315–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Nishiyama, M., Yuasa, M., Shibata, T., Wakasugi, T., Kawahara, T., Yamaguchi, O.: Recognizing Faces of Moving People by Hierarchical Image-Set Matching. In: CVPR Workshop Biometrics 2007, pp. 1–8 (2007)

    Google Scholar 

  20. Yuasa, M., Kozakaya, T., Yamaguchi, O.: An Efficient 3D Geometrical Consistency Criterion for Detection of a Set of Facial Feature Points. In: Proceedings of the IAPR Conference on Machine Vision Applications (IAPR MVA 2007), pp. 25–28 (2007)

    Google Scholar 

  21. Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. Image Vision Comput. (IVC) 28(5), 772–780 (2010)

    Article  Google Scholar 

  22. Maeda, K.: From the Subspace Methods to the Mutual Subspace Method. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Computer Vision. SCI, vol. 285, pp. 135–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Nishiyama, M., Hadid, A., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial Deblur Inference using Subspace Analysis for Recognition of Blurred Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 838–845 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamaguchi, O. (2012). Face Recognition Technology and Its Real-World Application. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds) Perception and Machine Intelligence. PerMIn 2012. Lecture Notes in Computer Science, vol 7143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27387-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27387-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27386-5

  • Online ISBN: 978-3-642-27387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics