Nothing Special   »   [go: up one dir, main page]

Skip to main content

Aggregation of Correlation Measures for the Reverse Engineering of Gene Regulatory Sub-networks

  • Conference paper
Perception and Machine Intelligence (PerMIn 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7143))

Included in the following conference series:

  • 1302 Accesses

Abstract

This paper presents a simple and novel approach involving the aggregation of some correlation-based techniques for deciphering simple gene interaction sub-networks from biclusters in microarray time series gene expression data. Preprocessing has been used for discarding the weakly interacting gene pairs, i.e., those that are poorly correlated. The proposed technique was successfully applied to public-domain data sets of Yeast and the experimental results were biologically validated based on benchmark databases and information from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bo, T., Dysvik, B., Jonassen, I.: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32, 1–8 (2004)

    Article  Google Scholar 

  2. Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  3. Das, R., Mitra, S., Banka, H., Mukhopadhyay, S.: Evolutionary Biclustering with Correlation for Gene Interaction Networks. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 416–424. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Das, R., Mitra, S., Mukhopadhyay, S.: Cross-Correlation and Evolutionary Biclustering: Extracting Gene Interaction Sub-networks. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 199–204. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  6. Jong, H.d.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  7. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  8. Mitra, S., Das, R., Banka, H., Mukhopadhyay, S.: Gene interaction - An evolutionary biclustering approach. Information Fusion 10, 242–249 (2009)

    Article  Google Scholar 

  9. Mitra, S., Das, R., Hayashi, Y.: Genetic networks and soft computing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 94–107 (2011)

    Article  Google Scholar 

  10. Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: Genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)

    Article  Google Scholar 

  11. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  12. Zeitlinger, J., Simon, I., Harbison, C., Hannett, N., Volkert, T., Fink, G., Young, R.: Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, R., Mitra, S. (2012). Aggregation of Correlation Measures for the Reverse Engineering of Gene Regulatory Sub-networks. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds) Perception and Machine Intelligence. PerMIn 2012. Lecture Notes in Computer Science, vol 7143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27387-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27387-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27386-5

  • Online ISBN: 978-3-642-27387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics