Abstract
This paper presents a simple and novel approach involving the aggregation of some correlation-based techniques for deciphering simple gene interaction sub-networks from biclusters in microarray time series gene expression data. Preprocessing has been used for discarding the weakly interacting gene pairs, i.e., those that are poorly correlated. The proposed technique was successfully applied to public-domain data sets of Yeast and the experimental results were biologically validated based on benchmark databases and information from literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bo, T., Dysvik, B., Jonassen, I.: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32, 1–8 (2004)
Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)
Das, R., Mitra, S., Banka, H., Mukhopadhyay, S.: Evolutionary Biclustering with Correlation for Gene Interaction Networks. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 416–424. Springer, Heidelberg (2007)
Das, R., Mitra, S., Mukhopadhyay, S.: Cross-Correlation and Evolutionary Biclustering: Extracting Gene Interaction Sub-networks. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 199–204. Springer, Heidelberg (2009)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences USA 95, 14863–14868 (1998)
Jong, H.d.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)
Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)
Mitra, S., Das, R., Banka, H., Mukhopadhyay, S.: Gene interaction - An evolutionary biclustering approach. Information Fusion 10, 242–249 (2009)
Mitra, S., Das, R., Hayashi, Y.: Genetic networks and soft computing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 94–107 (2011)
Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: Genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)
Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)
Zeitlinger, J., Simon, I., Harbison, C., Hannett, N., Volkert, T., Fink, G., Young, R.: Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, R., Mitra, S. (2012). Aggregation of Correlation Measures for the Reverse Engineering of Gene Regulatory Sub-networks. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds) Perception and Machine Intelligence. PerMIn 2012. Lecture Notes in Computer Science, vol 7143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27387-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-27387-2_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27386-5
Online ISBN: 978-3-642-27387-2
eBook Packages: Computer ScienceComputer Science (R0)