Nothing Special   »   [go: up one dir, main page]

Skip to main content

Distance Measures in Training Set Selection for Debt Value Prediction

  • Conference paper
Perception and Machine Intelligence (PerMIn 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7143))

Included in the following conference series:

Abstract

A comparative study over six learning scenarios in debt pattern recognition is presented in the paper. There are proposed new approaches for distance measure definitions in training set selection. Using those measures for training set selection the inference models are trained using distinct reference. All proposed approaches are examined in dataset selection during prediction of debt portfolio value. Finally, basic evaluation on prediction performance is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cano, J.R., Herrera, F., Lozano, M.: Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation 7(6), 561–575 (2003)

    Article  Google Scholar 

  2. Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences 1(4), 300–307 (2007)

    MathSciNet  Google Scholar 

  3. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory 38, 713–718 (1992)

    Article  MATH  Google Scholar 

  4. Demmel, J.: Applied Numerical Linear Algebra. SIAM (1997)

    Google Scholar 

  5. Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier (2006)

    Google Scholar 

  6. Kajdanowicz, T., Kazienko, P.: Prediction of Sequential Values for Debt Recovery. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 337–344. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Lu, Q., Getoor, L.: Link-based classification using labeled and unlabeled data. In: ICML 2003 Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining (2003)

    Google Scholar 

  8. Meyer, C.D.: Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  9. Rencher, A.: Methods of multivariate analysis. John Wiley & Sons (2002)

    Google Scholar 

  10. Son, S.-H., Kim, J.-Y.: Data Reduction for Instance-Based Learning Using Entropy-Based Partitioning. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 590–599. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Theodoris, S., Koutroumbas, K.: Pattern Recognition. Elsevier (2009)

    Google Scholar 

  12. Toussaint, G.T.: Bibliography on estimation of misclassification. IEEE Transactions on Information Theory 20(4), 472–479 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ullah, A.: Entropy, divergence and distance measures with econometric applications, Department of Economics, University of California - Riverside (1993)

    Google Scholar 

  14. Zhou, K., Doyle, K., Glover, K.: Robust and Optimal Control. Prentice Hall (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kajdanowicz, T., Plamowski, S., Kazienko, P. (2012). Distance Measures in Training Set Selection for Debt Value Prediction. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds) Perception and Machine Intelligence. PerMIn 2012. Lecture Notes in Computer Science, vol 7143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27387-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27387-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27386-5

  • Online ISBN: 978-3-642-27387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics