Abstract
Can we discover audio-visually consistent events from videos in a totally unsupervised manner? And, how to mine videos with different genres? In this paper we present our new results in automatically discovering audio-visual events. A new measure is proposed to select audio-visually consistent elements from the two dendrograms respectively representing hierarchical clustering results for the audio and visual modalities. Each selected element corresponds to a candidate event. In order to construct a model for each event, each candidate event is represented as a group of clusters, and a voting mechanism is applied to select training examples for discriminative classifiers. Finally, the trained model is tested on the entire video to select video segments that belong to the event discovered. Experimental results on different and challenging genres of videos, show the effectiveness of our approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben, M., Gravier, G.: Unsupervised mining of audiovisually consistent segments in videos with application to structure analysis. In: IEEE International Conference on Multimedia and Exhibition ICME 2011, Barcelona, Spain (July 2011)
Naphade, M., Li, C., Huang, T.: Discovering Recurrent Events in Multichannel Data Streams Using Unsupervised Methods. In: Data Mining: Next Generation Challenges and Future Directions. AAAI Press (2004)
Hauptmann, A., Baron, R.V., Chen, M.Y., Christel, M., Duygulu, P., Huang, C., Jin, R., Lin, W.H., Ng, T., Moraveji, N., Snoek, C.G.M., Tzanetakis, G., Yang, J., Yan, R., Wactlar, H.D.: Analyzing and searching broadcast news video. In: Proc. of TRECVID (2003)
Tat-Seng, C., Shih-Fu, C., Lekha, C., Winston, H.: Story boundary detection in large broadcast news video archives: techniques, experience and trends. In: Proceedings of the 12th ACM International Conference on Multimedia (2004)
Clarkson, B., Pentland, A.: Unsupervised clustering of ambulatory audio and video. In: IEEE International Conference on Proceedings of the Acoustics, Speech, and Signal Processing, vol. 6, pp. 3037–3040 (1999)
Xie, L., Chang, S., Divakaran, A., Sun, H.: Unsupervised Mining of Statistical Temporal Structures. In: Rosenfeld, A., et al. (eds.) Video Mining, ch.10. Kluwer Academic Publishers (2003)
Petkovic, M., Mihajlovic, V., Jonker, W., Djordjevic-Kajan, S.: Multi-Modal Extraction of Highlights from TV Formula 1 Programs. In: Proceedings of the IEEE International Conference on Multimedia and Expo, ICME (2002)
Wang, F., Ma, Y.-F., Zhang, H.-J., Li, J.-T.: A Generic Framework for Semantic Sports Video Analysis Using Dynamic Bayesian Networks. In: International MultiMedia Modeling Conference, pp. 115–122 (2005)
Covell, M., Baluja, S., Fink, M.: Detecting Ads in Video Streams Using Acoustic and Visual Cues. IEEE Computer Magazine 19(12) (2006)
Herley, C.: ARGOS: automatically extracting repeating objects from multimedia streams. IEEE Transactions on Multimedia 8(1) (2006)
Jacobs, A.: Using Self-similarity Matrices for Structure Mining on News Video. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 87–94. Springer, Heidelberg (2006)
Yang, X.-F., Tian, Q., Xue, P.: Efficient Short Video Repeat Identification With Application to News Video Structure Analysis. IEEE Transactions on Multimedia 9(3), 600–609 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ta, AP., Ben, M., Gravier, G. (2012). Improving Cluster Selection and Event Modeling in Unsupervised Mining for Automatic Audiovisual Video Structuring. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-27355-1_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27354-4
Online ISBN: 978-3-642-27355-1
eBook Packages: Computer ScienceComputer Science (R0)