Nothing Special   »   [go: up one dir, main page]

Skip to main content

Software Coverage : A Testing Approach through Ant Colony Optimization

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2011)

Abstract

Software Testing is one of the most important parts of the software development lifecycle. Testing effectiveness can be achieved by the State Transition Testing (STT) and path testing which is commonly used for carrying out functional and structural testing of software systems. The tester is required to test all possible transitions and paths in the system under built. Aim of the current paper is to present an algorithm for generation of test sequences for state transitions of the system as well as path generation for CFG of the software code using the basic property and behavior of the ants. This novel approach tries to find out all the effective (or can say optimal) paths and test sequences by applying ant colony optimization (ACO) principle using some set of rules. This algorithm tries to give maximum software coverage with minimal redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sommerville, I.: Software Engineering, 8th edn. Pearson Edition (2009)

    Google Scholar 

  2. Mathur, A.P.: Foundation of Software Testing, 1st edn. Pearson Education (2007)

    Google Scholar 

  3. Myers, G.: The Art of Software Testing, 2nd edn., p. 234. John Wiley & Son. Inc. (2004)

    Google Scholar 

  4. Dorigoa, M., Stutzle, T.: Ant colony optimization, The Knowledge Engineering Review, vol. 20, pp. 92–93. Cambridge University Press, New York (2005)

    Google Scholar 

  5. Doerner, K., Gutjahr, W.J.: Extracting Test Sequences from a Markov Software Usage Model by ACO. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2465–2476. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. McMinn, P., Holcombe, M.: The State Problem for Evolutionary Testing. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2488–2500. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Li, H., Lam, C.P.: An Ant Colony Optimization Approach to Test Sequence Generation for State based Software Testing. In: Proceedings of the Fifth International Conference on Quality Software (QSIC 2005), pp. 255–264 (2005)

    Google Scholar 

  8. Briand, L.C.: On the many ways Software Engineering can benefit from Knowledge Engineering. In: Proc. 14th SEKE, Italy, pp. 3–6 (2002)

    Google Scholar 

  9. Pedrycz, W., Peters, J.F.: Computational Intelligence in Software Engineering. World Scientific Publishers (1998)

    Google Scholar 

  10. Srivastava, P.R., Baby, K.M.: An Approach of Optimal Path Generation using Ant Colony Optimization, pp. 1–6. IEEE-TENCON, Singapore (2009) ISBN-978-1-4244-4546-2

    Google Scholar 

  11. Doungsa-ard, C., Dahal, K., Hossain, A., Suwannasart, T.: An Improved Automatic Test Data Generation from UML State Machine Diagram. In: ICSEA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharma, B., Girdhar, I., Taneja, M., Basia, P., Vadla, S., Srivastava, P.R. (2011). Software Coverage : A Testing Approach through Ant Colony Optimization. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2011. Lecture Notes in Computer Science, vol 7076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27172-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27172-4_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27171-7

  • Online ISBN: 978-3-642-27172-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics