Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Translation from Quantified Modal Logic into the Counterpart Theory Revisited

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7091))

Abstract

The counterpart theory which was introduced by David Lewis is an alternative semantics to the possible worlds semantics for quantified modal logic. Lewis interprets modal claims by using a translation from quantified modal logic into the counterpart theory. Due to the flexibility of semantics of the counterpart theory, Lewis’s translation may translate an unsatisfiable formula to a satisfiable one. In this paper, two properties are defined to describe Lewis’s translation, called the faithfulness and fullness. The former implies a translation which preserves the satisfiability of formulas, whereas the latter implies the preservation of the unsatisfiability. We show that Lewis’s translation is faithful but not full. To make Lewis’s translation full, two auxiliary axioms are added to restrain the counterpart relation such that every possible object has exactly one counterpart in every possible world. Under the circumstances, we show that Lewis’s translation is a faithful and full translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boolos, G.: On second-order logic. Journal of Philosophy 72, 509–527 (1975)

    Article  Google Scholar 

  2. Fara, M., Williamson, T.: Counterparts and actuality. Mind 114, 1–30 (2005)

    Article  MathSciNet  Google Scholar 

  3. Forbes, G.: Canonical counterpart theory. Analysis 42, 33–37 (1982)

    Article  Google Scholar 

  4. Forbes, G.: Counterparts, logic and metaphysics: Reply to Ramachandran. Analysis 50, 167–173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hintikka, J.: Modality and Quantification. Theoria 27, 119–128 (1961)

    Article  MathSciNet  Google Scholar 

  6. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

    MATH  Google Scholar 

  7. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)

    Book  MATH  Google Scholar 

  8. Kracht, M., Kutz, O.: Logically possible worlds and counterpart semantics for modal logic. In: Jacquette, D. (ed.) Philosophy of Logic. Handbook of the Philosophy of Science, vol. 5, pp. 943–996. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  9. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  10. Kripke, S.: Semantical analysis of modal logic I, normal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kripke, S.: Semantic analysis of modal logic II, non-normal modal propositional calculi. In: Addison, J.W., Tarski, A. (eds.) The Theory of Models, pp. 206–220. North-Holland, Amsterdam (1965)

    Google Scholar 

  12. Lewis, D.: Counterpart theory and quantified modal logic. Journal of Philosophy 65, 113–126 (1968)

    Article  Google Scholar 

  13. Lewis, D.: On the Plurality of Worlds. Blackwell, Oxford (1986)

    Google Scholar 

  14. Nour, K., Raffalli, C.: Simple proof of the completeness theorem for second-order classical and intuitionistic logic by reduction to first-order mono-sorted logic. Theoretical Computer Science 308, 227–237 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ohlbach, H.J., Nonnengart, A., De Rijke, M., Gabbay, D.: Encoding two-valued nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1403–1486. Elsevier (2001)

    Google Scholar 

  16. Ramachandran, M.: An alternative translation scheme for counterpart theory. Analysis 49, 131–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ramachandran, M.: Contingent identity in counterpart theory. Analysis 50, 163–166 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt, R., Hustadt, U.: The axiomatic translation principle for modal logic. ACM Transactions on Computational Logic 8, 1–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, Y., Sui, Y., Wang, J. (2011). On the Translation from Quantified Modal Logic into the Counterpart Theory Revisited. In: Xiong, H., Lee, W.B. (eds) Knowledge Science, Engineering and Management. KSEM 2011. Lecture Notes in Computer Science(), vol 7091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25975-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25975-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25974-6

  • Online ISBN: 978-3-642-25975-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics