Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6839))

Included in the following conference series:

  • 3462 Accesses

Abstract

This paper studies principles, characteristics and process of psychological warfare and the essentials of artificial intelligence. By providing the theoretical frame of expert system in psychological warfare (ESPW) based on production rule, this paper makes breakthroughs on the combination of artificial intelligence and psychological warfare. This theoretical frame is the foundation of ESPW and it covers production rule set, fact database, knowledge reason tree, reason machine principle and other contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference Neural Networks, Perth, Australia, pp. 1942–1948. IEEE Press, New York (1995)

    Chapter  Google Scholar 

  2. Ho, S.L., Yang, S., Ni, G., Lo, E.W.C., Wong, H.C.: A Particle Swarm Optimization-based Method for Multiobjective Design Optimizations. IEEE Trans. on Magn. 41, 1756–1759 (2005)

    Article  Google Scholar 

  3. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Timevarying Acceleration Coefficients. IEEE Trans. on Evolu. Comp. 8, 240–255 (2004)

    Article  Google Scholar 

  4. Tan, K.C., Khor, E.F., Lee, T.H.: Evolutionary Multi-objective Optimization: Algorithms and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolu. Comp. 6, 182–197 (2002)

    Article  Google Scholar 

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Computation Engineering Networks Lab (TIK), Swiss Fed. Inst. Technol (ETH), Zurich, Switzerland, Tech. Rep. 103 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Long, F., Wang, Y. (2012). Probe into Principle of Expert System in Psychological Warfare. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25944-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25943-2

  • Online ISBN: 978-3-642-25944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics