Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6839))

Included in the following conference series:

  • 3524 Accesses

Abstract

Statistical textons has shown its potential ability in texture image classification. The maximal response 8 (MR8) method extracts an 8-dimensional feature set from 38 filters. It is one of state-of-the-art rotation invariant texture classification methods. This method assumes that each local patch has a dominant orientation, thus it keeps the maximal response from six responses of different orientations in the same scale. To validate whether local dominant orientation is necessary for texture classification, in this paper, a complex texton, complex response 8 (CR8), is proposed. The average and standard deviation of filter responses for different orientations is computed, and then an 8-dimensional complex texton is extracted. After using k-means clustering algorithm to learn a texton dictionary, a histogram of texton distribution could be built for a given image. Experimental results on one large public database show that CR8 could get comparable results with MR8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tuceryan, M., Jain, A.K.: In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 235–276. World Scientific Publishing Co., Singapore (1993)

    Chapter  Google Scholar 

  2. Anys, H., He, D.C.: Evaluation of Textural and Multipolarization Radar Features for Crop Classification. IEEE Transactions on Geoscience and Remote Sensing 33(5), 1170–1181 (1995)

    Article  Google Scholar 

  3. Ji, Q., Engel, J., Craine, E.: Texture Analysis for Classification of Cervix Lesions. IEEE Transactions on Medical Imaging 19(11), 1144–1149 (2000)

    Article  Google Scholar 

  4. Jia, W., Huang, D.S., Zhang, D.: Palmprint Verification Based on Robust Line Orientation Code. Pattern Recognition 41(5), 1504–1513 (2008)

    Article  MATH  Google Scholar 

  5. Haralik, R.M., Shanmugam, K., Dinstein, I.: Texture Features for Image Classification. IEEE Trans. on Systems, Man, and Cybertics 3(6), 610–621 (1973)

    Article  Google Scholar 

  6. Randen, T., Husy, J.H.: Filtering for Texture Classification: a Comparative Study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)

    Article  Google Scholar 

  7. Kashyap, R.L., Khotanzed, A.: A Model-based Method for Rotation Invariant Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 472–481 (1986)

    Article  Google Scholar 

  8. Mao, J., Jain, A.K.: Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models. Pattern Recognition 25(2), 173–188 (1992)

    Article  Google Scholar 

  9. Wu, W.R., Wei, S.C.: Rotation and Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, and Hidden Markov Model. IEEE Transactions on Image Processing 5(10), 1423–1434 (1996)

    Article  Google Scholar 

  10. Deng, H., Clausi, D.A.: Gaussian MRF Rotation-invariant Features for Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 951–955 (2004)

    Article  Google Scholar 

  11. Xu, Y., Ji, H., Fermuller, C.: Viewpoint Invariant Texture Description Using Fractal Analysis. International Journal of Computer Vision 83(1), 85–100 (2009)

    Article  Google Scholar 

  12. Varma, M., Zisserman, A.: A statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision 62(1-2), 61–81 (2005)

    Article  Google Scholar 

  13. Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  14. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, Chichester (2000)

    MATH  Google Scholar 

  17. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex – New Framework for Empirical Evaluation of Texture Analysis Algorithm. In: International Conference on Pattern Recognition, pp. 701–706 (2002)

    Google Scholar 

  18. Varma, M., Zisserman, A.: A statistical Approach to Material Classification Uusing Image Patch Exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 2032–2047 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Z., Li, Q., Zhang, L., You, J., Liu, W., Wang, J. (2012). Texture Image Classification Using Complex Texton. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25944-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25943-2

  • Online ISBN: 978-3-642-25944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics