Abstract
Statistical textons has shown its potential ability in texture image classification. The maximal response 8 (MR8) method extracts an 8-dimensional feature set from 38 filters. It is one of state-of-the-art rotation invariant texture classification methods. This method assumes that each local patch has a dominant orientation, thus it keeps the maximal response from six responses of different orientations in the same scale. To validate whether local dominant orientation is necessary for texture classification, in this paper, a complex texton, complex response 8 (CR8), is proposed. The average and standard deviation of filter responses for different orientations is computed, and then an 8-dimensional complex texton is extracted. After using k-means clustering algorithm to learn a texton dictionary, a histogram of texton distribution could be built for a given image. Experimental results on one large public database show that CR8 could get comparable results with MR8.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuceryan, M., Jain, A.K.: In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 235–276. World Scientific Publishing Co., Singapore (1993)
Anys, H., He, D.C.: Evaluation of Textural and Multipolarization Radar Features for Crop Classification. IEEE Transactions on Geoscience and Remote Sensing 33(5), 1170–1181 (1995)
Ji, Q., Engel, J., Craine, E.: Texture Analysis for Classification of Cervix Lesions. IEEE Transactions on Medical Imaging 19(11), 1144–1149 (2000)
Jia, W., Huang, D.S., Zhang, D.: Palmprint Verification Based on Robust Line Orientation Code. Pattern Recognition 41(5), 1504–1513 (2008)
Haralik, R.M., Shanmugam, K., Dinstein, I.: Texture Features for Image Classification. IEEE Trans. on Systems, Man, and Cybertics 3(6), 610–621 (1973)
Randen, T., Husy, J.H.: Filtering for Texture Classification: a Comparative Study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)
Kashyap, R.L., Khotanzed, A.: A Model-based Method for Rotation Invariant Texture Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 472–481 (1986)
Mao, J., Jain, A.K.: Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models. Pattern Recognition 25(2), 173–188 (1992)
Wu, W.R., Wei, S.C.: Rotation and Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, and Hidden Markov Model. IEEE Transactions on Image Processing 5(10), 1423–1434 (1996)
Deng, H., Clausi, D.A.: Gaussian MRF Rotation-invariant Features for Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7), 951–955 (2004)
Xu, Y., Ji, H., Fermuller, C.: Viewpoint Invariant Texture Description Using Fractal Analysis. International Journal of Computer Vision 83(1), 85–100 (2009)
Varma, M., Zisserman, A.: A statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision 62(1-2), 61–81 (2005)
Ojala, T., Pietikäinen, M., Mäenpää, T.T.: Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)
Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, Chichester (2000)
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex – New Framework for Empirical Evaluation of Texture Analysis Algorithm. In: International Conference on Pattern Recognition, pp. 701–706 (2002)
Varma, M., Zisserman, A.: A statistical Approach to Material Classification Uusing Image Patch Exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11), 2032–2047 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, Z., Li, Q., Zhang, L., You, J., Liu, W., Wang, J. (2012). Texture Image Classification Using Complex Texton. In: Huang, DS., Gan, Y., Gupta, P., Gromiha, M.M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2011. Lecture Notes in Computer Science(), vol 6839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25944-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-25944-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25943-2
Online ISBN: 978-3-642-25944-9
eBook Packages: Computer ScienceComputer Science (R0)